TIPOLOGIE DEI DISSESTI CHE INTERESSANO LA PARETE

Particolare di un blocco isolato dalla discontinuità giacitura (G) che per azione meccanica delle radici, dell'acqua e di altri blocchi che vi finiscono al suo interno, provocano una rotazione predisponendo il blocco al **toppling** non per geometria delle discontinuità ma per azione erosiva.

Particolare di un blocco individuato dalle discontinuità **J1** e **J3** soggetto al ribaltamento

Le testate degli strati sulla linea di cresta o sulle cenge intermedie qualora siano totalmente staccate, possono produrre il **toppling** di blocchi da decimetrici a metrici di spessore proporzionale allo strato (0,3 - 1,0 m). La potenzialità del fenomeno aumenta proporzionalmente con la verticalità del fronte. Anche in questi casi il fenomeno evolve in crollo a causa del dislivello e dell'acclività pressoché verticale.

EIGEOLOGIDELLAZIO

CARATTERIZZAZIONE DELL'AMMASSO ROCCIOSO

La caratterizzazione dell'ammasso roccioso è stata eseguita realizzando **9 stazioni strutturali** numerate a partire dal n. 7 (**S07- S15**) poiché integrate a quelle già realizzate tra il 2001 e il 2003 (stazioni **S01-S06**) nel lotto adiacente a quello in esame. Dip

<u>d</u>

Scie

inut

Roma

PRINCIPALI FAMIGLIE DI DISCONTINUITÀ DELL'AMMASSO ROCCIOSO

Dipartimento di Scienze

VEDEIGEOLOGIDELLAZIO

FAMIGLIA	DIREZIONE IMMERSIONE	INCLINAZIONE
G	80	80
J1	260	80
J2	343	20
J3	260	25
J4	340	65
J5	170	75
J6	80	60

ANALISI CINEMATICA MEDIANTE IL TEST DI MARKLAND

Project	VSM_2019_TOTALE
Total data	7
Plane	7 (100%)
Lineation	0 (0%)
Intersection	21
Analysis type	Wedge failure analysis
Dip of slope	80
Dip direction of slope	80
Friction angle	45
Data in envelope	3 (14.3% of total intersections)
List of	the data
Dip direction/Dip of intersect	Families of joints
104.896, 57.5233	J6/J5
35.1017, 50.8182	J6/J4
136.653, 72.2158	G/J5
List of the	intersections
1	104.896, 57.5233
2	35.1017, 50.8182
3	350, 1.67617
4	1.49514, 19.0432
5	350, 5.93768
6	350, 0
7	256.354, 13.3511
8	252.878, 24.8304
9	259.379, 2.31576
10	203.347, 72.2158
11	136.653, 72.2158
12	262.546, 24.9783
13	69.3872, 1.31384
14	328.27, 64.5337
15	9.26168, 61.8749
16	309.431, 16.8709
17	170, 0
18	350, 1.89333
19	346.327, 19.969
20	353.617, 19.6842
21	350, 1.20891

Rappresentazione stereografica dei risultati del test di Markland: scivolamento di cunei.

W

Dipartimento

di Scienze

ORDINEDE GEOLOGIDELLAZIO

DIPARTIMENTO DI SCIENZE DELLA TERRA

SAPIENZ

/ERSITÀ DI ROM

61

mull

Roma

Tre

PARAMETRI GEOMECCANICI DELLE DISCONTINUITÀ

PARAMETRI PER LA DESCRIZIONE QUANTITATIVA DELLE DISCONTINUITÀ (I.S.M.R., 1993)

- A1 Resistenza a compressione uniassiale (UCS e JCS);
- A2 Spaziatura;
- A3 Lunghezza o Persistenza;
- A4 Apertura;
- A5 Rugosità JCR;
- A6 Alterazione;
- A7 Riempimento;
- A8 Condizioni idrauliche
- A9 Numero Famiglie delle discontinuità
- A10 Jv e Dimensione dei blocchi

STAZIONE S11	ZIONE \$11
--------------	------------

FAMIGLIE GIUNTI	A1 (Mpa)	A2 (m)	A3 (m)	A4	A5	A6	Α7	A8	A9	A10
G	90	0,3 - 1	> 20		JRC = 8 - 10	3		Asciutte	7 - 10	Jv = 1,6 Blocchi mediamente grandi; localmente (cresta e cenge)
J1	98	0,5 – 1	3 – 10		JRC = 12 - 14	5	Da Assente			
J2	110	4 - 10	> 20	Da Chiusa (stretta) a Semi- aperta	JRC = 10 - 12	5				
J3	112	0,5 - 1	2 - 10		JRC = 10 - 12	5	a			
J4	100	2 - 8	5 - 15		JRC = 10 - 12	5	Compatto			
J5	98	10 - 15	10 - 15	(aperta)	JRC = 12 - 14	5	> 5 mm			medi e piccoli
۶L	100	0,5 - 1	1 – 2		JRC = 10 - 12	5				

Per la determinazione della coesione e dell'angolo di attrito delle discontinuità si è applicato il **criterio di Barton – Choubey** che ha fornito i seguenti valori:

c' = 10 kPa e $\phi' = 45^{\circ}$

Dipartime

nto

<u>d</u>

Scienz

EIGEOLOGIDELLAZIO

O DI SCIENZE DELLA TERR

Roma

MODELLO GEOLOGICO DI RIFERIMENTO

PIE

EDE GEOLOGIDELLAZIC

PERICOLOSITÀ GEOLOGICA Suddivisione della parete rocciosa in "Aree di omogeneità".

Sulla base del modello geologico-geomeccanico di riferimento e sulle considerazioni dell'assetto geomorfologico, la parete rocciosa analizzata è stata suddivisa in determinate "Aree di omogeneità". Tale omogenizzazione consente nell'ambito degli interventi ingegneristici di avere un indirizzo progettuale di massima sulle soluzioni da adottare, relativamente agli interventi di mitigazione della pericolosità geologica. Le aree di omogeneità sono state suddivise sulla base delle seguenti caratteristiche:

- Forma geomorfologica
- Fenomeno geomorfologico potenziale;
- Pericolosità;
- Magnitudo;
- Tipologia intervento

AREA	FORMA GEOMORFOLOGICA	mq	%
A1	Cresta	302	7,41
A2	Diedro	174	4,27
A3	Tetto	84	2,06
A4	Cengia	277	6,80
В	Placca	3.236	79,45
	TOTALE	4.073	100

TIPOLOGIE DI INTERVENTO PER LA MESSA IN SICUREZZA

Area	Forma geomorfologica	Fenomeno geomorfologico potenziale	Pericolosità	Magnitudo	Tipologia intervento		
		Crollo blocchi	Alta	Alta			
		Ribaltamento	Alta	Alta			
A1	A1 CRESTA	Scivolamento	Alta	Alta	Placcaggio con reti Chiodature Disgaggio Sarcitura fessure		
		Crollo blocchi	Alta			MARINE MARKEN AND AND AND AND AND AND AND AND AND AN	
A2	DIEDRO	Scivolamento blocchi e cunei tetraedrici	Alta	Alta>>300 kJ	Disgaggio Chiodature		
A3	TETTO	Crollo blocchi	Alta	Alta	Disgaggio Chiodature		
		Crollo blocchi liberi	Alta				
A4	CENGIA	Ribaltamento blocchi	Media	Alta	Alta	Disgaggio Chiodature	
		Scivolamento blocchi e cunei tetraedrici	Media				
Р	PLACCA	Scivolamento	Bassa		Disgaggio		
D	B PLACCA	Ribaltamento	BUSSU	Allu300 KJ	Chiodature		
C		Rotolamento di blocchi	Alta	Bassa<300kJ	Reti		
C	IALUS DI IRANA	Rimbalzo di blocchi	Alla	Alta>> 300 kJ	Muri-valli	Carl Prover 1 Arts	

SAPIENZA Università di Roma

Dipartimento di Scienze

ORDINEDE GEOLOGIDELLAZIO

DIPARTIMENTO DI SCIENZE DELLA TERRA

mill

Roma

Tre

Studio geostrutturale e geomeccanico dell'ammasso roccioso sottostante la pila nord (pila 1) del Ponte Fiume Scrivia (località Belvedere) della carreggiata sud dell'autostrada A7 Milano-Genova (Cod. Opera 07.01.0103.0.1) (Regione Piemonte, Provincia di Alessandria, Comune di Arquata Scrivia). Dip

intl

GEOLOGIDE

LLAZIO

OPERAZIONI PRELIMINARI ED ESECUTIVE PER L'ACCESSO IN PARETE

L'area investigata è una parete rocciosa alta circa 15 - 16 m, subverticale (80°-90°), con il settore inferiore, in corrispondenza del pelo libero dell'acqua del Fiume Scrivia, aggettante per alcuni metri a formare una sorta di "solco di battigia".

FASE 1

Installazione dei supporti per la calata su fune sfruttando gli ancoraggi strutturali presenti sul piano stradale (guard rail). FASE 2

Discesa su fune dal piano stradale (Calata C1) fino alla base della fondazione della pila 1.

FASE 3

Realizzazione di una **linea vita provvisoria** sulla pila 1. FASE 4

Pulizia del ciglio della base della pila 1 dai detriti e dai blocchi instabili per la sicurezza delle calate.

FASE 5

Discese lungo tutto lo sviluppo verticale e orizzontale di interesse della pila 1 (Calate C2, C3 e C4) con rilievo geostrutturale e geomeccanico dell'ammasso roccioso.

FASE 6

Smontaggio della linea vita.

FASE 7

Risalita su fune lungo la linea C1 e smontaggio degli ancoraggi realizzati su guard rail.

OPERAZIONI PRELIMINARI ED ESECUTIVE PER L'ACCESSO IN PARETE

Dipartimento mill Roma d Scienze Tre

ШЦЦ

ORDINEDE GEOLOGIDELLAZIO

MODELLO GEOLOGICO DI RIFERIMENTO

Alluvioni ghiaiose, sabbiose e argillose attuali; alluvioni recenti terrazzate (A2).

Formazione di Rigoroso (Oligocene - Miocene basale)

Marne argillose grige o grigio verdastre con rari livelli cineritici o silicei. Nel settore compreso fra il T. Lemme e il T. Scrivia, in corrispondenza della parte media della formazione, si intercalano strati decimetrici di arenarie medio-fini risedimentate (Ri). Le marne suddette inglobano corpi arenacei a geometria lenticolare costituiti in prevalenza da arenarie medie e grossolane e arenarie conglomeratiche risedimentate; (Ri1): membro di Costa Montada; (Ri2): membro di Variano. Depositi di scarpata e/o conoide sottomarina

Conglomerati di Savignone (Oligocene)

Conglomerati in grossi banchi a ciottoli prevalentemente calcarei e di pietre verdi con locali intercalazioni arenacee (Co). Depositi di delta conoide

Calcari dell'Antola (Turoniano - Paleocene) Alternanze ritmiche di strati calcareo marnosi ed arenacei con strati argilloso marnosi (An).

EIGEOLOGIDELLAZIO

TIMENTO DI SCIENZE DELLA TERR

Apl

KOM

Design and build tender for the consolidation of the unstable, fragile terrain underlying the enceinte and restoration of the historic ramparts of the Citadel fortifications, Gozo, Malta (CTD04).

Dipa

unt

Il modello geomeccanico della rupe in sintesi è caratterizzato da una **roccia clastica calcarea** con componente feldspatica, quarzosa, glauconitica e una matrice calcareo argillosa. Nelle zone dove prevale la componente calcarea l'ammasso è litoide e la roccia molto compatta; dove la componente silicatica è maggiore si hanno fenomeni di forte alterazione. La stratificazione è poco regolare (tendenzialmente monoclinalica alla scala della struttura della Citadella) con strati spessi da qualche a molti metri che rende l'ammasso roccioso massiccio.

Dip

imfl

intl

NEDE GEOLOGIDELLAZIO

ID AREA ROCK FA		DCK FACE DIP SLOPE		NAIL DIRECTION	NAIL TILT ANGLE	NAIL LENGHT
(-)	(°)	(°)	(-)	(°)	(°)	(m)
			N _A 1	248	30	6
			N _A 2	248	30	6
			N _A 3	248	30	6
			N _A 4	248	30	6
AB	68	65	N _A 5	248	30	6
			N _A 6	248	-10	6
			N _A 7	248	-10	6
			N _A 8	248	30	6
			N _A 9	248	30	6
		70	N _B 1	240	30	6
	60		N _B 2	240	30	6
			N _B 3	240	-20	6
			N _B 4	240	-20	6
			N _B 5	240	30	6
RC			N _B 6	240	30	6
BC			N _B 7	240	30	6
			N _B 8	240	30	6
			N _B 9	240	5	6
			N _B 10	240	5	6
			N _B 11	240	5	6
			N _B 12	240	5	6

Dipartimento di Scienze

DEIGEOLOGI<mark>DE</mark>LLAZIO

Analisi di stabilità dei cunei di roccia della Cittadella (Rabat; Gozo Malta)

75

C

Dipartim

5

intl

CARATTERIZZAZIONE GEOMECCANICA E GEOSTRUTTURALE DI UNA PARETE ROCCIOSA

Con la collaborazione del **Dott. Geol. Nando Bauco**

Modello Geologico di Riferimento

Diparti

Sc

init

Ro

CARATTERIZZAZIONE GEOMECCANICA E GEOSTRUTTURALE DI UNA PARETE ROCCIOSA

Jv	Descrizione
Jv < 1	Blocchi molto grandi
1-3	Blocchi grandi
3 - 10	Blocchi medi
10 - 30	Blocchi piccoli
Jv > 30	Blocchi molto piccoli

	CLASSIFICAZIONE DI BIENIAWSKI SGG 2	
A1	Resistenza a compressione uniassiale	7,62
A2	RQD (Rock Quality Designation)	20,39
A3	Spaziatura delle discontinuità	10,88
A4a	Lunghezza o Persistenza	2,00
A4b	Apertura	0,00
A4c	Rugosità	1,00
A4d	Alterazione	3,00
A4e	Riempimento	0,00
A5	Condizioni idrauliche	15,00
Indice di	base RMRB	59,89
CLASSE	AMMASSO ROCCIOSO	III
Coesione	c' (kPa) = 5×RMRs	299,45
Modulo d	i deformazione E (GPa) = 10exp(RMRs-10/40)	17,67
Angolo d	i attrito di picco φp (°) = 0,5×RMRB + 5	34,95

mull

init

CARATTERIZZAZIONE GEOMECCANICA E GEOSTRUTTURALE DI UNA PARETE ROCCIOSA

APIE

KOM

Dipartim

10

g

Scie

ORDINED

EIGEOLOGIDELLAZIO

RTIMENTO DI SCIENZE DELLA TERR

шЩ

unt

Ro

ma

Ire

CALCARI A BRIOZOI E LITOTAMNI - calcareniti a punti rossi (CBZ₂) - Calcareniti e subordinate calciruditi brunoaranciate con frequenti "punti rossi" e, a più livelli, glauconite; rare intercalazioni marnose. Strati da medi a spessi, tipicamente losangati (biozona SBZ26 p.p.) (ra-pca). LANGHIANO -TORTONIANO p.p.

FORMAZIONE BOLOGNANO - Calcareniti biancastre, con intercalazioni marnose, alternate a calcareniti ricche in litotamni. Strati medi e spessi. Presenza di livelli bituminosi soprattutto alla base e al tetto del membro (B0L₃); marne e marne calcaree grigiastre, calcareniti fini, con selce episodica e noduli di limonite e glauconite, strati sottili e medi (B0L₂);calcari biodetritici grigi ed avana, in strati molto spessi a volte amalgamati. Abbondante glauconite sopratutto alla base (B0L₁) (biozone SBZ22-SBZ26) (ra-pca). *RUPELIANO p.p. - TORTONIANO p.p.* Dipartim

nto

d

Sc

len

inuff

J

0

Distanza progressiva (m)

83

Dipartimento

d

S

cienze

Ř

NEDE GEOLOGIDELLAZIO

DIPARTIMENTO DI SCIENZE DELLA TERRA

SAPIEN INIVERSITÀ DI

ROM/

inuff

J

oma

Ire

10 Gallo (FE) - Yolky	2					Denominazione documento Allegato 02	Tavola 04
	0	03/2025	125 T. Urbano C. Chilufya R. Di Pasquale Titolo	Titolo	Casia		
tik www.ggms4.8	Re	v.Data	Redatto	Controllato	Approvato	PLANIMETRIA CON GIUNTI PRINCIPALI	1:800

IIIII

init

85

APIE

ROM

intl

Roma

Ire

GRAZIE PER L'ATTENZIONE

Dott. Geol. Paolo Zaffiro c/o E&G Srl Largo Amba Áradam, 1 - 00184 Roma Cell. 3318394430 Tel. 06 97279156 (7) paolo.zaffiro@gmail.com

A.E. 2021 S.r.I.

ORDINEDEIGEOLOGIDELLAZIO

...E PER LA

PAZIENZA !!!

