

L'interdisciplinarietà delle analisi di Risposta Sismica Locale: approcci e metodi

Caratterizzazione dinamica dei terreni mediante prove in-situ e di laboratorio

Analisi numeriche per la valutazione della Risposta Sismica Locale

Relatore:

Dott. Ing. Erminio Salvatore (e.salvatore@unicas.it)

Introduzione al problema

Rischio sismico

 $R = H \cdot V \cdot E$

 $R = P \cdot S \cdot V_E \cdot V_B \cdot V_N \cdot E$

H (pericolosità sismica): probabilità di accadimento di un dato evento sismico nello spazio e nel tempo

H = pericolosità sismica regionale (P) x effetto di sito (S)

V (vulnerabilità): vulnerabilità nei confronti del danneggiamento di un sistema

H = V. del sistema fisico(V_E) x V. del costruito (V_B) x V. delle reti ed infrastrutture (V_N)

E (esposizione): perdita subita dalla società e dalle risorse correlate

Introduzione al problema

Rischio sismico

$$R = H \cdot V \cdot E$$

 $R = P \cdot S \cdot V_E \cdot V_B \cdot V_N \cdot E$

Sismologia/Neotettonica Catalogo sismicità storica Mappa faglie attive **RISCHIO SISMICO REGIONALE** (deterministica Valutazione probabilistica MODELLO SISMOGENETICO Cartografia isosismica Registrazioni strong-motion Geofisica ATTENUAZIONE DEL MOTO SISMICO Intensità sismica Accelerazione e/o velocità di picco Spettro di risposta **TERREMOTO DI** Geologia RIFERIMENTO Geologia di superficie SU SUBSTRATO Caratterizzazione geotecnica Analisi di microtremori o scoppi Geotecnica ANALISI DEGLI EFFETTI LOCALI Incrementi di intensità Classificazione del sottosuolo Amplificazione locale relativa Analisi della risposta sismica locale **DISTRIBUZIONE DELLA RISPOSTA SISMICA LOCALE** (carta di microzonazione) Urbanistica

Ingegneria strutturale

(TC4-ISSMFE, 1993)

Flowchart della procedura di microzonizzazione

Generazione e propagazione delle onde

Sistemi geotecnici a comportamento sismico instabile

Generazione e propagazione delle onde

Equazione di equilibrio dinamico in direzione x:

$$\sigma_{x}(d_{y}d_{z}) - \left(\sigma_{x} + \frac{\partial\sigma_{x}}{\partial x}d_{x}\right)(d_{y}d_{z}) + \tau_{yx}(d_{x}d_{z}) - \left(\tau_{yx} + \frac{\partial\tau_{yx}}{\partial y}d_{y}\right)(d_{x}d_{z}) + \tau_{zx}(d_{x}d_{y}) - \left(\tau_{zx} + \frac{\partial\tau_{zx}}{\partial z}d_{z}\right)(d_{x}d_{y}) = -m\frac{\partial^{2}u}{\partial t^{2}}$$

$$\sigma_{x}(d_{y}d_{z}) - \sigma_{x}(d_{y}d_{z}) - \frac{\partial\sigma_{x}}{\partial x}d_{x}d_{y}d_{z} + \tau_{yx}(d_{x}d_{z}) - \tau_{yx}(d_{x}d_{z}) - \frac{\partial\tau_{yx}}{\partial y}d_{x}d_{y}d_{z} + \tau_{zx}(d_{x}d_{y}) - \tau_{zx}(d_{x}d_{y}) - \frac{\partial\tau_{zx}}{\partial z}d_{x}d_{y}d_{z} = -m\frac{\partial^{2}u}{\partial t^{2}}$$

$$-\frac{\partial\sigma_{x}}{\partial x}d_{x}d_{y}d_{z} - \frac{\partial\tau_{yx}}{\partial y}d_{x}d_{y}d_{z} - \frac{\partial\tau_{zx}}{\partial z}d_{x}d_{y}d_{z} = -m\frac{\partial^{2}u}{\partial t^{2}}$$

$$-\frac{\partial\sigma_{x}}{\partial x}d_{x}d_{y}d_{z} - \frac{\partial\tau_{yx}}{\partial y}d_{x}d_{y}d_{z} - \frac{\partial\tau_{zx}}{\partial z}d_{x}d_{y}d_{z} = -m\frac{\partial^{2}u}{\partial t^{2}}$$

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} = \rho \frac{\partial^2 u}{\partial t^2}$$

Propagazione delle 'perturbazioni'

Onda di deformazione volumetrica:

Onda di deformazione di taglio:

$$\mathbf{v} \frac{\partial^2 \gamma_{ij}}{\partial t^2} = \mathbf{G} \Delta^2 \gamma_{ij} \qquad \{ij = xy, yz, zx\} \qquad \qquad \mathbf{V}_{\mathbf{S}} = \sqrt{\frac{\mathbf{G}}{\rho}}$$

$$(P = Prima, S = Secunda)$$

Generazione e propagazione delle onde

Considerazioni:

- Vista la limitata variabilità della densità dei terreni e rocce, la velocità di propagazione delle onde sismiche è essenzialmente proporzionale alla rigidezza del materiale attraversato
- Nei terreni saturi:

La V_P dipende essenzialmente dalla compressibilità del fluido di falda, quindi considerando rigidezza volumetrica e densità dell'acqua V_P≈1450m/s. La V_S andrà invece determinata con rigidezza G pari a quella dello scheletro solido e densità pari a $\rho_{sat} = \frac{\gamma_{sat}}{a}$

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno):

- Genera onde riflesse nel mezzo di provenienza
- Genera onde trasmesse o rifratte nel mezzo di destinazione

Le onde generate possono essere di natura differente rispetto a quella incidente

(schema di doppio semispazio indefinito)

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno):

- Genera onde riflesse nel mezzo di provenienza
- Genera onde trasmesse o rifratte nel mezzo di destinazione

Le onde generate possono essere di natura differente rispetto a quella incidente

Un onda SV incidente genera:

- Un'onda SV riflessa ed un onda SV rifratta
- Un'onda P riflessa ed un onda P rifratta

Legge di Snell

$$\frac{\operatorname{sen i}}{V_{S1}} = \frac{\operatorname{sen r}}{V_{S1}} = \frac{\operatorname{sen s}}{V_{P1}} = \frac{\operatorname{sen t}}{V_{S2}} = \frac{\operatorname{sen u}}{V_{P2}}$$

Considerazioni:

• Nel passare da un mezzo più rigido ad uno meno rigido (es. dalla roccia ai terreni sciolti) l'onda SV trasmessa tende a convergere verso la verticale

ρ_n, V_{Pn}, V_{Sr}

 ρ_i, V_{Pi}, V_{Si}

$$V_{S1} > V_{S2} \qquad \qquad \frac{sen i}{V_{S1}} = \frac{sen t}{V_{S2}} \qquad \qquad \frac{sen t}{sen i} = \frac{V_{S2}}{V_{S1}} < 1 \qquad \qquad t < i$$

Nel passare da un mezzo meno rigido ad uno più rigido (es. dai terreni sciolti alla roccia) l'onda SV trasmessa tende ad un valore limite di 90° (l'onda si prepaga lungo l'interfaccia, *head wave*)

$$V_{S1} < V_{S2} \qquad \qquad \frac{sen i}{V_{S1}} = \frac{sen t}{V_{S2}} \qquad \qquad t > i \qquad \qquad \frac{sen i_c}{V_{S1}} = \frac{sen 90^\circ}{V_{S2}} \qquad \qquad \frac{sen i_c}{V_{S1}} = \frac{sen 90^\circ}{V_{S2}} = \frac{1}{V_{S2}} \qquad \qquad i_c = \arcsin\left(\frac{V_{S1}}{V_{S2}}\right)$$

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno)ù:

- Genera onde riflesse nel mezzo di provenienza
- Genera onde trasmesse o rifratte nel mezzo di destinazione

Le onde generate possono essere di natura differente rispetto a quella incidente

Un onda SV incidente genera:

- Un'onda SV riflessa ed un onda SV rifratta
- Un'onda P riflessa ed un onda P rifratta

Un onda SH incidente genera:

• Un'onda SH riflessa ed un onda SH rifratta

Un onda P incidente genera:

- Un'onda SV riflessa ed un onda SV rifratta
- Un'onda P riflessa ed un onda P rifratta

(schema di doppio semispazio indefinito)

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno):

- Genera onde riflesse nel mezzo di provenienza
- Genera onde trasmesse o rifratte nel mezzo di destinazione
- Genera onde superficiali

$$\mathbf{V}_{\mathbf{R}} = \mathbf{f}(\mathbf{V}_{\mathrm{S}}, \mathbf{v}) = \mathbf{0.87} \, \mathbf{V}_{\mathrm{S}} \div \mathbf{0.96} \, \mathbf{V}_{\mathrm{S}} \qquad \qquad \lambda_{R} = \frac{V_{R}}{f}$$

Le componenti orizzontali e verticali sono sfasate di ¼ di periodo per cui le particelle seguono un percorso ellittico retrogrado

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno) :

- Genera onde riflesse nel mezzo di provenienza
- Genera onde trasmesse o rifratte nel mezzo di destinazione
- Genera onde superficiali

Le componenti orizzontali e verticali sono sfasate di ¼ di periodo per cui le particelle seguono un percorso ellittico retrogrado

Generazione e propagazione delle onde

Propagazione delle onde nei mezzi stratificati

Un onda incidente all'interfaccia tra due materiali (es. 1 roccia \rightarrow 2 terreno):

Genera onde riflesse nel mezzo di provenienza ٠

7

- Genera onde trasmesse o rifratte nel mezzo di destinazione ٠
- Genera onde superficiali ٠
- Modifica l'ampiezza degli spostamenti in misura inversamente proporzionale all'impedenza sismica (Z=pV) dei mezzi a contatto •

Rapporto tra le impedenze

Ampiezza dell'onda riflessa

Ampiezza dell'onda trasmessa

$$\mu = \frac{Z_2}{Z_1} = \frac{\rho_2 V_2}{\rho_1 V_1} \qquad \qquad u_r = \frac{1 - \mu}{1 + \mu} u_i \qquad \qquad u_t = \frac{2}{1 + \mu} u_i$$

ρ_1 (kg/m ³)	V _{s1} (m/s)	Z_1 (kg/m ² s)	ρ_2 (kg/m ³)	V _{s2} (m/s)	Z_2 (kg/m ² s)	u _i (m)	μ	u _r (m)	u _t (m)
1900	800	1520000	1900	400	760000	0.100	0.5	0.033	0.133

Considerazioni e conclusioni:

- Generalmente velocità di propagazione delle onde, densità ed inclinazione degli strati diminuiscono lungo il percorso delle onde di volume.
- Avvicinandosi alla superficie l'onda segue un percorso curvilineo che converge verso la verticale e gli spostamenti aumentano d'intensità.
- Essendo i terreni in gran parte sotto falda, e data l'elevata rapidità delle azioni, il fenomeno sismico produce deformazioni volumetriche (indotte dalle onde P) trascurabili rispetto a quelle distorsionali (prodotte dalle onde S).
- Appare giustificato ricondurre la modellazione meccanica del fenomeno sismico all'analisi degli effetti prodotti da un insieme di onde S propagantisi verso l'alto con un campo di spostamenti del terreno praticamente orizzontale.
- Quest'ultima assunzione è oltretutto giustificata dal fatto che, dal punto di vista ingegneristico, il moto più significativo ai fini della verifica sismica dei manufatti è quello orizzontale.

Cenni sulla dinamica dei terreni

Il modulo di taglio G ed lo smorzamento D variano in funzione della distorsione γ per effetto della non linearità del terreno

Oltre la soglia volumetrica (γ_v):	Condizione di drenaggio				
	consentita (alta permeabilità)	non consentita (bassa permeabilità)			
Effotto cul comportamento volumetrico	Deformazioni volumetriche ε _v ≠0	Deformazioni volumetriche ϵ_v =0			
	Sovrapressioni neutre Δ u=0	Sovrapressioni neutre ∆u≠0			
Effette culle rispecte tence, defermative	Degradazione dei cicli $[G(\gamma), D(\gamma) = f(N_{cicli})]$				
Enerto suna risposta tenso- deformativa	Accumulo di deformazioni plastiche ε_s				

Cenni sulla dinamica dei terreni

	Piccole deformazioni $\gamma < \gamma_l$	Medie deformazioni $\gamma_l < \gamma < \gamma_v$	Grandi deformazioni $\gamma > \gamma_v$		
omportamento	Modelli visco-elastici lineari	Modelli a parametri variabili	Modelli elasto plastici		
	Tensioni totali	Tensioni totali	Tensioni efficaci		
	Analisi lineare	Analisi lineare equivalente	Analisi non lineare		

Modello interpretativo di comportamente

Framework di analisi

Tipologia di analisi

Grandi deformazioni ($\gamma > \gamma_v$): accoppiamento volumetrico distorsionale

Condizione di drenaggio libero (terreni ad elevata permeabilità)

Condizione di drenaggio impedito (terreni a bassa permeabilità)

Prova di taglio torsionale su sabbia sciolta del fiume Fuji (Ishihara, 1985)

⁽Youde, 1972)

Cenni sulla dinamica dei terreni

(a)

Effetto della tensione di confinamento (profondità)

Prove di taglio torsionale

Darendeli, 2001 after Stokoe et al., 1999

Cenni sulla dinamica dei terreni

Effetto della plasticità

Effetto della storia tensionale (OCR)

Vucetic, 1992 after Vucetic and Dobry, 1991

Darendeli, 2001

Darendeli, 2001

Cenni sulla dinamica dei terreni

Curve di riferimento per le sabbie

Effetto della dimensione dei grani

Effetto della forma dei grani

Effetto del numero di cicli

Oltre la soglia volumetrica $\gamma_{v'}$ la rigidezza equivalente G misurata:

- non è univocamente associata alla deformazione γ
- varia con il numero di cicli N

Categorie di prova		Tipo di prova	Stato	Deformazione	Frequenza	Rigidezza	Smorzamento	Resistenza	
			tensionale	γ [%]	f [Hz]			G	F
In situ	Denetrom	SPT				$N {\rightarrow} V_S {\rightarrow} G_0$		φ'	
	Penetrom.	СРТ				$q_c \rightarrow V_S \rightarrow G_0$		φ'	Cu
	Geofisiche	Down-Hole				$V_S \to G_0$	-		
		Cross-Hole	Litostatico	<10 ⁻³	10-100	$V_{\text{S}} \to G_0$	possibile		
		SASW				$V_R \to V_S \to G_0$	-		
Laboratorio	Cicliche	Triassiale	Simmetria radiale	>10 ⁻²	0.01-1	$q{:}\epsilon_a {\rightarrow} E {\rightarrow} G$		$q/\sigma'_r : N_c$	
		Taglio semplice	Simmetria radiale	>10-2	0.01-1	$\tau{:}\gamma \to G$	$W_D/W_S \rightarrow D$	τ/σ΄ν	: N _c
		Taglio torsionale	Simmetria radiale o triax vero	10-4 -1	0.01-1	$\tau{:}\gamma\to G_0,\ G$			
	Dinamiche	Colonna risonante	Simmetria radiale o triax vero	10 ⁻⁴ -1	>10	fr →G₀, G	H.p., R.f. → D		
		Trasduttori piezoceramici	Simmetria radiale	<10 ⁻³	>100	$V_S \to G_0$	-		

Legenda:

V_R = velocità onde di Rayleigh; f_r = frequenza di risonanza; H.p. = metodo della semibanda di potenza; R.f. = metodo del fattore di risonanza

Prova Penetrometrica Standard SPT (ASTM D 1586) (Raymond pile company, 1902)

N1

N2

Ν3

N_{spt}

Prova di penetrazione dinamica a fondo foro

Parametri di battitura:

- Peso del maglio 63.5 Kg
- Altezza di caduta 0.76 m

Figure 5-3. Sequence of Driving Split-Barrel Sampler During the Standard Penetration Test.

Frequente in tutti i tipi di terreno, talora impossibile o poco indicativa nelle ghiaie, poco indicativa nei terreni argillosi

⁽Gibbs e Holtz, 1957)

Prova Penetrometrica Standard SPT (ASTM D 1586) (Raymond pile company, 1902)

aroillosi

Prova Penetrometrica Standard SPT (ASTM D 1586) (Raymond pile company, 1902)

Figure 5-3. Sequence of Driving Split-Barrel Sampler During the Standard Penetration Test.

Frequente in tutti i tipi di terreno, talora impossibile o poco indicativa nelle ghiaie, poco indicativa nei terreni argillosi

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della valutazione semplificata della risposta sismica locale, nelle NTC, non è più consentita la classificazione del sottosuolo sulla base del parametro N_{SPT30} per i terreni a grana grossa e C_{u30} per i terreni a grana fine

Prova penetrometrica conica CPT (ASTM D 5778) (Netherlands Department of Public Works, 1930)

Frequente in tutti i tipi di terreno, ad eccezione delle ghiaie o delle argille molto consistenti

Figure 5-9. Piezocone Results next to Mississippi River, Memphis, TN.

Prova di penetrazione statica continua

Frequente in tutti i tipi di terreno, ad eccezione delle ghiaie o delle argille molto consistenti

Prova di penetrazione statica continua

Frequente in tutti i tipi di terreno, ad eccezione delle ghiaie o delle argille molto consistenti

Prova di penetrazione statica continua

Figure 5-8. Procedures and Components of the Cone Penetration Test.

Frequente in tutti i tipi di terreno, ad eccezione delle ghiaie o delle argille molto consistenti

Nella maggior parte dei casi $15 \le N_k \le 25$

Prova di penetrazione statica continua

Figure 5-8. Procedures and Components of the Cone Penetration Test.

Frequente in tutti i tipi di terreno, ad eccezione delle ghiaie o delle argille molto consistenti

Barrow and Stokoe (1983): per tutti i terreni

 $V_S = 506 + 2.1 \cdot q_c$

Mayne and Rix(1995): per i terreni a grana fine

$$V_S = 1.75 \cdot q_c^{0.627}$$

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della valutazione semplificata della risposta sismica locale, nelle NTC, non è più consentita la classificazione del sottosuolo sulla base del parametro N_{SPT30} per i terreni a grana grossa e C_{u30} per i terreni a grana fine

Prova geofisica Down-Hole (ASTM D7400/D7400M-19)

Prova geofisica Down-Hole (ASTM D7400/D7400M-19)

Prova geofisica Cross-Hole (ASTM D4428/D4428M - 14)

Prova geofisica Cross-Hole (ASTM D4428/D4428M - 14)

☺ l'onda diretta arriva prima della rifratta ad entrambi i ricevitori

S l'onda diretta e quella rifratta arrivano insieme al secondo ricevitore

⊗ l'onda rifratta arriva prima della diretta al secondo ricevitore

 \otimes \otimes l'onda diretta e quella rifratta arrivano insieme al primo ricevitore

 \otimes \otimes l'onda rifratta arriva prima della diretta già al primo ricevitore

(modificato da Rocha and Giacheti, 2019)

Prova geofisica a riflessione

Prova geofisica per rifrazione (ASTM D5777-18)

Prova geofisica MASW Multichannel Analysis of Surface Waves (ASTM WK89536)

In un mezzo stratificato le onde di Rayleigh sono dispersive, onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali, invece onde a bassa frequenza si propagano negli strati più profondi.

Il metodo MASW consiste in tre fasi (Roma, 2002):

1. Calcolo della velocità di fase (o curva di dispersione) apparente

sperimentale;

La curva di dispersione apparente o effettiva che si ottiene dalle tracce misurate in sito è il risultato dell'interazione tra tutti i modi di Rayleigh e lo stesso sistema di misura costituito dai ricevitori.

- 2. Calcolo della velocità di fase apparente numerica;
- 3. Fissando numero di strati del modello, il coefficiente di Poisson v, la densità di ρ, si variano lo spessore h e la velocità Vs degli strati fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo assegnato

Prova geofisica MASW Multichannel Analysis of Surface Waves (ASTM WK89536)

In un mezzo stratificato le onde di Rayleigh sono dispersive, onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali, invece onde a bassa frequenza si propagano negli strati più profondi.

Esempio di procedura di convergenza:

(Foti et al., 2018)

Il metodo MASW consiste in tre fasi (Roma, 2002):

1. Calcolo della velocità di fase (o curva di dispersione) apparente

sperimentale;

La curva di dispersione apparente o effettiva che si ottiene dalle tracce misurate in sito è il risultato dell'interazione tra tutti i modi di Rayleigh e lo stesso sistema di misura costituito dai ricevitori.

2. Calcolo della velocità di fase apparente numerica;

3. Fissando numero di strati del modello, il coefficiente di Poisson v, la densità di ρ, si variano lo spessore h e la velocità Vs degli strati fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo assegnato

Caratterizzazione meccanica dei terreni – prove in situ

Prova Horizontal to Vertical Spectral Ratio (HVSR) (Nogoshi e Igarashi, 1970; Nakamura, 1989)

L'indagine consiste nella misurazione, e nella successiva elaborazione, del microtremore ambientale nelle sue tre componenti spaziali (x, y e z opp. E-W, N-S e Up-Down) a varie frequenze.

Dall'analisi delle componenti spettrali delle tracce registrate è possibile:

• ricavare la frequenza fondamentale (o di risonanza) del sito;

La frequenza fondamentale del sito è da intendersi quella più significativa a bassa frequenza.

Eventuali altre frequenze evidenziate (picchi secondari) se vicine alle frequenze di interesse ingegneristico (struttura) possono essere comunque significative.

Categorie di prova		Tipo di prova	Stato	Deformazione	Frequenza	Rigidezza	Smorzamento	Resis	stenza
			tensionale	γ [%]	f [Hz]			G	F
In situ	Penetrom.	SPT				$N {\rightarrow} V_S {\rightarrow} G_0$		φ'	
		СРТ				$q_c \rightarrow V_S \rightarrow G_0$		φ'	Cu
	Geofisiche	Down-Hole				$V_S \to G_0$	-		
		Cross-Hole	Litostatico	<10 ⁻³	10-100	$V_{\text{S}} \to G_0$	possibile		
		SASW				$V_R \to V_S \to G_0$	-		
Laboratorio	Cicliche	Triassiale	Simmetria radiale	>10 ⁻²	0.01-1	$q{:}\epsilon_a {\rightarrow} E {\rightarrow} G$	$W_D/W_S \rightarrow D$	q/σ′r:N _c	
		Taglio semplice	Simmetria radiale	>10 ⁻²	0.01-1	τ:γ →G		τ/σ΄ν	/ : Nc
		Taglio torsionale	Simmetria radiale o triax vero	10 ⁻⁴ -1	0.01-1	$\tau{:}\gamma\to G_0,G$			
	Dinamiche	Colonna risonante	Simmetria radiale o triax vero	10-4-1	>10	fr →G₀, G	H.p., R.f. \rightarrow D		
		Trasduttori piezoceramici	Simmetria radiale	<10 ⁻³	>100	$V_S \to G_0$	-		

Legenda:

V_R = velocità onde di Rayleigh; f_r = frequenza di risonanza; H.p. = metodo della semibanda di potenza; R.f. = metodo del fattore di risonanza

Prova triassiale ciclica

Esempio di risultati per una prova TX-CD

(UNICAS, Cassino)

Prova triassiale ciclica

Campo di deformazioni investigato:

Prova triassiale ciclica

Campo di deformazioni investigato:

Prova triassiale ciclica

Prova triassiale ciclica non drenata su sabbia di Fossanova S3 (D_r=30% CSR=0.227)

 δ_{h}

 \odot σ_a può essere controllata σ_r non può essere controllata X

- (Mele, 2020)
- σ_a può essere controllata σ_r può essere controllata

Apparecchiatura di taglio semplice ciclico con doppio provino (DSDSS)

(Sapienza, Roma)

Prova di colonna risonante - taglio torsionale RCTS

(D'Onofrio, 1996)

(Moayerian, 2012)

Magnet

(a) Top View

⁽modificato da Hwang, 1997)

⁽modificato da Hwang, 1997)

Prova di taglio colonna risonante - taglio torsionale RCTS

Prova di colonna risonante

Prova di taglio colonna risonante - taglio torsionale RCTS

Prova di colonna risonante

(D'Onofrio, 1996)

Metodo del decadimento libero

Con: n: numero di cicli tra due punti di picco $Z_1 e z_{n+1}$, ampiezza rispettivamente al ciclo 1 ed n+1

Prova di taglio colonna risonante - taglio torsionale RCTS

Prova di taglio torsionale

Campo di deformazioni investigato:

(D'Onofrio, 1996)

Caratterizzazione meccanica dei terreni - conclusioni

Prove in situ

vantaggi

© Misurano le proprietà del materiale senza risentire del disturbo dovute al campionamento

svantaggi

On consentono di investigare il comportamento non-lineare del terreno (medie-grandi deformazioni)

Prove di laboratorio

© consentono di investigare il comportamento del terreno su tutto il range di deformazioni, da piccole deformazioni sino alla rottura

[©] Le proprietà misurate risentono del disturbo dovuto al campionamento del materiale

Combinare le curve di decadimento del modulo G ottenute sperimentalmente con il valore di G0 misurato in-situ

$$G(\gamma) = (G_0)_{situ} \cdot \left[\frac{G(\gamma)}{G_0}\right]_{lab}$$

Le analisi di RSL sono effettuate utilizzando procedure di calcolo numerico in cui viene simulata la propagazione delle onde sismiche entro gli strati di terreno compresi tra il sottostante substrato rigido e il piano campagna.

Le analisi di RSL richiedono le seguenti operazioni:

1) Scelta della schematizzazione geometrica del problema;

2) Definizione del modello geotecnico del sottosuolo;

3) Definizione delle azioni sismiche al substrato rigido;

4) Scelta della procedura di analisi.

1) Scelta della schematizzazione geometrica

In condizioni di stratigrafia e topografia regolari è possibile schematizzare il problema secondo dei modelli monodimensionali (1D).

CASTELNUOVO

ID OTHER O

1D: sottosuolo con moderate variazioni di topografia e stratigrafia

In caso di mancata regolarità morfologica, topografica e stratigrafica, l'analisi monodimensionale non è molto realistica e quindi occorre almeno un'analisi bidimensionale (2D).

In questo caso non si lavora più su colonne stratigrafiche ma su sezioni stratigrafiche.

2D: valli alluvionali, creste, colli, rilevati

1) Scelta della schematizzazione geometrica

Effetti geometrici 2D e 3D proporzionali al fattore di forma H/L

Amplificazione stratigrafica:

- riflessioni multiple e diffrazione
- conversione di onde di volume in onde di superficie

Amplificazione topografica:

- focalizzazione di onde incidenti e riflesse
- risonanza del rilievo

Osservazioni intuitive:

- L'effetto della topografia può essere significativo quando l'irregolarità topografica ha dimensioni prossime al campo di valori della lunghezza d'onda incidente (2L≈λ)
- L'amplificazione in sommità ad un rilievo aumenta con la ripidità del versante

Metodi di analisi numerica del sottosuolo stratificato

Modello a masse concentrate:

- Il deposito viene schematizzato con masse concentrate, collegate mediante molle e smorzatori che simulano leggi sforzideformazioni non lineari.
- Il problema si risolve risolvendo n equazioni.

$$\mathbf{M} \cdot \ddot{\mathbf{u}} + \mathbf{C} \cdot \dot{\mathbf{u}} + \mathbf{K} \cdot \mathbf{u} = \mathbf{1} \cdot c_{n+1} \dot{u}_r$$

$$=\frac{\rho_{1}h_{1}}{2} \quad m_{j}=\frac{\rho_{j}h_{j}+\rho_{j-1}h_{j-1}}{2} \quad m_{n+1}=\frac{\rho_{n}h_{n}}{2}$$

• C = matrice degli smorzamenti

$$\mathbf{C} = \begin{bmatrix} c_1 & -c_1 \\ -c_1 & c_1 + c_2 & -c_2 \\ & \cdots \\ & & -c_{j-1} & c_{j-1} + c_j & -c_j \\ & & \cdots \\ & & & -c_n & c_n \end{bmatrix}$$

Discretizzazione del dominio di analisi

Per soddisfare l'ipotesi di distribuzione lineare di spostamenti lungo un elemento/sottostrato Kuhlemeyer & Lysmer (1973) suggeriscono una regola aurea per ottimizzare la discretizzazione di uno strato con velocità VS:

almeno 3÷4 punti per semi-lunghezza d'onda

$$h_{max} = \frac{\lambda_{min}}{6 \div 8} = \frac{V_S}{(6 \div 8)f_{max}}$$

dove f_{max} = massima frequenza significativa del segnale in ingresso

Codici di analisi dinamica

Geometria	Codice di calcolo	Fonte	Discretizzazione Dominio di analisi Metodo di analisi	Condizioni frontiera laterale	Legame costitutivo	-
1D	SHAKE e derivati EERA STRATA DEEPSOIL DF	Schnabel et al. (1972) Bardet et al. (2000) Kottke e Rathje (2008) Hashash (2012)	Continuo Dominio frequenza Lineare equivalente	-	Tensioni totali Visco-elastico	
	DESRA e derivati NERA DEEPSOIL DT ACST	Finn et al. (1976) Bardet e Tobita (2001) Hashash (2012) Ausilio et al. (2008)	MDOF Dominio tempo Non lineare	-	Tensioni totali Isteretico	
2D	QUAD4M QUAKE/W	Hudson et al. (1994) www.geo-slope.com/	F.E.M. Dominio tempo Lineare equivalente	Rigida Assorbente	Tensioni totali Visco-elastico	Tensioni total
2D/3D	FLAC	www.itascacg.com/software	F.D.M. Dominio tempo Non lineare	Assorbente Free-field	Tensioni efficaci Isteretico/Elasto-plastico	
	GEFDYN PLAXIS ABAQUS	Aubry e Modaressi (1996) <u>www.plaxis.nl</u> www.3ds.com/products- services/simulia/overview/	F.E.M. Dominio tempo Non lineare	Assorbente	Tensioni efficaci Elasto-plastico	Tensioni effica

Tensioni efficaci

MDOF = sistema a masse concentrate; F.E.M. = metodo agli elementi finiti; F.D.M. = metodo alle differenze finite

Analisi/Modello elastico lineare

Il modello fa riferimento al modello reologico molla-smorzatore viscoso in parallelo di Kelvin-Voigt assumendo rigidezza (G) e smorzamento (D) costanti

arametri H: spessore degli strati ρ: densità G₀: modulo di rigidezza (ottenibile da V_s) D₀: modulo smorzamento viscoso

Analisi lineare equivalente

Analisi/modelli non lineari a parametri variabili

Formulazione diretta: $G = f(\gamma)$

Modello Iperbolico

(Hardin & Drnevich, 1972)

 $\frac{G}{G_0} = \frac{1}{1 + \left(\gamma/\gamma_r\right)}$

 γ_r = deformazione di riferimento = τ_y/G_0 τ_y = tensione tangenziale limite τ_y

Curva di primo carico "backbone":

 $\tau = F_{bb}(\gamma) = \frac{\gamma \cdot G_0}{1 + (\gamma/\gamma_r)}$

(Matasovic & Vucetic, 1995)

$$\frac{G}{G_0} = \frac{1}{1 + \beta \left(\gamma/\gamma_r\right)^s}$$

 γ_r = deformazione di riferimento β , s = parametri adimensionali di forma

Curva di primo carico "backbone":

$$\mathbf{r} = \mathbf{F}_{bb}(\gamma) = \frac{\gamma \cdot \mathbf{G}_0}{1 + \beta \left(\gamma / \gamma_r\right)^s}$$

Formulazione inversa: γ = F(G) **Ramberg-Osgood (1944)**

R, C = parametri adimensionali di forma

Curva di primo carico "backbone":

$$\tau = F_{bb}(\gamma) \rightarrow \gamma = \frac{\tau}{G_0} + C \left(\frac{\tau}{G_0}\right)^{F}$$

Analisi/modelli non lineari a parametri variabili

Influenza di C sulla posizione

Influenza di R sulla curvatura

Formulazione inversa: $\gamma = F(G)$ **Ramberg-Osgood (1944)** $\gamma = \tau + C \left(\tau\right)^{R}$ (3) $\left(1 - \frac{G}{G_{0}}\right)^{\frac{1}{R}}$

R, C = parametri adimensionali di forma

Curva di primo carico "backbone":

$$\tau = F_{bb}(\gamma) \rightarrow \gamma = \frac{\tau}{G_0} + C \left(\frac{\tau}{G_0}\right)^{F}$$

Analisi/modelli non lineari a parametri variabili – gestione del percorso di carico ciclico

Modello a parametri variabili

Incrudimento cinematico

10-1

10

10

Deformazione a taglio, y [%]

10

10

Analisi/modelli non lineari a parametri variabili – gestione del percorso di carico ciclico

Limitazioni del criterio di Masing

del terreno.

Analisi/modelli non lineari a parametri variabili – gestione del percorso di carico ciclico

Modifica del criterio di Masing

Curva di scarico/ricarico (Phillips & Hashash, 2009):

$$\tau = F(\gamma_{m}) \cdot \left[\frac{G_{0}(\gamma - \gamma_{c})}{1 + \beta \left(\frac{\gamma - \gamma_{c}}{2\gamma_{r}} \right)^{s}} - \frac{G_{0}(\gamma - \gamma_{c})}{1 + \beta \left(\frac{\gamma_{m}}{2\gamma_{r}} \right)^{s}} \right] + \frac{G_{0}(\gamma - \gamma_{c})}{1 + \beta \left(\frac{\gamma_{m}}{2\gamma_{r}} \right)^{s}} + \tau_{c}$$

$$\gamma_{m} = \text{deformazione massima raggiunta nella storia di carico}$$
Se il carico è armonico $\gamma_{m} = \gamma_{c}$

Fattore di riduzione (calcolato interpolando i dati sperimentali di smorzamento)

$$F(\gamma_{\rm m}) = \frac{D_{\rm misurato}}{D_{\rm Masing}} = p_1 - p_2 \left(1 - \frac{G(\gamma_{\rm m})}{G_0}\right)^{p_3}$$

Effetti:

- riduzione dell'ampiezza del ciclo teorico
- rigidezza iniziale nella fase di scarico-ricarico, $G_c = f(\gamma_m) \neq G_0$

Analisi non lineari con modelli elasto-plastici incrudenti (tensioni efficaci)

- Si basano sulla definizione di:
- un inviluppo di resistenza (p.es. Mohr Coulomb), che circoscrive gli stati tensionali limite
- una superficie di snervamento, che definisce gli stati di plasticizzazione
- un criterio di incrudimento, che ne definisce l'evoluzione con lo stato tensio-deformativo
- una legge di flusso, che insieme all'incrudimento definisce l'entità delle deformazioni plastiche (può essere 'associata' o non alla superficie di snervamento)

Analisi non lineari con modelli elasto-plastici incrudenti (tensioni efficaci)

Prove di taglio ciclico su sabbia del fiume Fuji (lai et al., 1992)

prestazioni su sabbie sciolte

prestazioni su sabbie dense

Il campo di applicabilità dei diversi modelli (L, LE e NL) può essere definito rispetto a valori di soglia della deformazione massima γ_{max}

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Si denomina "**risposta sismica locale**" l'azione sismica che emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

2.4.3. VITA NOMINALE DI PROGETTO

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tab. 2.4.1 – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	Valori minimi di V_N (anni)		
1	Costruzioni temporanee e provvisorie	10		
2	Costruzioni con livelli di prestazioni ordinari	50		
3	Costruzioni con livelli di prestazioni elevati	100		

Non sono da considerarsi temporanee le costruzioni o parti di esse che possono essere smantellate con l'intento di essere riutilizzate. Per un'opera di nuova realizzazione la cui fase di costruzione sia prevista in sede di progetto di durata pari a P_N, la vita nominale relativa a tale fase di costruzione, ai fini della valutazione delle azioni sismiche, dovrà essere assunta non inferiore a P_N e comunque non inferiore a 5 anni.

Le verifiche sismiche di opere di tipo 1 o in fase di costruzione possono omettersi quando il progetto preveda che tale condizione permanga per meno di 2 anni.

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Si denomina "**risposta sismica locale**" l'azione sismica che emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

- *Classe II:* Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- *Classe III*: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- *Classe IV*: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Si denomina "**risposta sismica locale**" l'azione sismica che emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

2.4.3. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Il valore del coefficiente d'uso C_{U} è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II.

CLASSE D'USO	I	II	Ш	IV
COEFFICIENTE C _U	0.7	1.0	1.5	2.0

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U :

$$V_R = V_N \cdot C_U$$

[2.4.1]

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Si denomina "**risposta sismica locale**" l'azione sismica che emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Gli Stati limite di esercizio (SLE) comprendono:

- **Stato Limite di Operatività** (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;

- **Stato Limite di Danno** (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- **Stato Limite di salvaguardia della Vita** (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;

- **Stato Limite di prevenzione del Collasso** (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

C3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Si denomina "**risposta sismica locale**" l'azione sismica che emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

3.2.1. STATI LIMITE E RELATIVE PROBABILITÀ DI SUPERAMENTO

Le probabilità di superamento nel periodo di riferimento P_{VR}, cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportate nella Tab. 3.2.I.

Stati Limite	P _{vR} : Probabilità di superamento nel periodo di riferimento VR			
Stati limite di	SLO	81%		
esercizio	SLD	63%		
Stati limita ultimi	SLV	10%		
Stati timite uttimi	SLC	5%		

Per ciascuno stato limite e relativa probabilità di eccedenza P_{VR} nel periodo di riferimento V_R si ricava il periodo di ritorno T_R del sisma utilizzando la relazione:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_R})} = -\frac{C_U V_N}{\ln(1 - P_{V_R})}$$
3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi, da eseguire con le modalità indicate nel § 7.11.3. In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_s. I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_s per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo, di cui al § 6.2.2.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, V_{S.eq} (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{H_{I}}{V_{S,i}}}$$
[3.2.1]

h_i spessore dell'i-esimo strato;

V_{s.i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da V_s non inferiore a 800 m/s.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio V_{S,eq} è definita dal parametro V_{S,30}, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi, da eseguire con le modalità indicate nel § 7.11.3. In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_s. I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_s per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo, di cui al § 6.2.2.

27/10/2020 - BOLLETTINO UFFICIALE DELLA REGIONE LAZIO - N. 129

Regione Lazio

Atti della Giunta Regionale e degli Assessori

Deliberazione 20 ottobre 2020, n. 724

Adozione del regolamento regionale concernente "Regolamento regionale per la semplificazione e l'aggiornamento delle procedure per l'esercizio delle funzioni regionali in materia di prevenzione del rischio sismico. Abrogazione del regolamento regionale 13 luglio 2016, n.14 e successive modifiche"

Art.5 (Contenuto minimo dei progetti)

5. L'analisi di risposta sismica locale per le opere relative alle classi d'uso III e IV, qualora previste dalla deliberazione della Giunta regionale del 23 luglio 2019, n. 493, è obbligatoria.

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.2.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

T_c è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato dalla relazione

 $T_C = C_C \cdot T_C^*$ [3.2.5] dove: T_C^* è definito al § 3.2 e C_C è un coefficiente funzione della categoria di sottosuolo (vedi Tab. 3.2.IV);

 T_B è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante, dato dalla relazione $T_B = T_C/3$ [3.2.6]

T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione

$$T_D = 4.0 \cdot \frac{a_g}{g} + 1.6$$
 [3.2.6]

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.2.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$

[3.2.4]

dove ξ (espresso in percentuale) è valutato sulla base dei materiali, della tipologia strutturale e del terreno di fondazione;

F_o è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;

APPROCCIO SEMPLIFICATO

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.2.1 in accelerazione delle componenti orizzontali

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F_{o} valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

$0 \le T < T_B S_e(T) = a_g$	$\cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$	[3.2.2]
$T_B \leq T < T_C$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$	
$T_C \leq T < T_D$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$	
$T_D \leq T$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2}\right)$	

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente

$$S = S_S \cdot S_T \tag{3.2.3}$$

Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti SS e CC valgono 1.

Per le categorie di sottosuolo B, C, D ed E i coefficienti $S_s e C_c$ possono essere calcolati, in funzione dei valori di Fo e T_c^* relativi al sottosuolo di categoria A, mediante le espressioni fornite nella Tab. 3.2.IV, nelle quali g = 9,81 m/s² è l'accelerazione di gravità e T_c^* è espresso in secondi.

Tab. 3.2.IV – Espressioni di S_S e di C_C

Categoria di sottosuolo	Ss	C _c
А	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot (T_{\mathcal{C}}^{*})^{-0,20}$
с	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40 - 1,50 \cdot F_0 \cdot \frac{a_g}{g} \le 1,80$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

APPROCCIO SEMPLIFICATO

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.2.1 in accelerazione delle componenti orizzontali

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F_{o} valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

$0 \le T < T_B \ S_e(T) = a_g$	$J \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B}\right)\right]$	[3.2.2]
$T_B \leq T < T_C$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$	
$T_C \leq T < T_D$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$	
$T_D \leq T$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2}\right)$	

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente

$$S = S_S \cdot S_T \tag{3.2.3}$$

Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti SS e CC valgono 1. Per le categorie di sottosuolo B, C, D ed E i coefficienti S_s e C_c possono essere calcolati, in funzione dei valori di Fo e T_c^{*} relativi al sottosuolo di categoria A, mediante le espressioni fornite nella Tab. 3.2.IV, nelle quali g = 9,81 m/s² è l'accelerazione di gravità e T_c^{*} è espresso in secondi.

Figura C3.2.3 – Andamento del coefficiente SS per le componenti orizzontali dell'azione sismica

APPROCCIO SEMPLIFICATO

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.2.1 in accelerazione delle componenti orizzontali

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento V_R, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al sito;
- F_{o} valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

$0 \le T < T_B \ S_e(T) = a_g$	$\cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$	[3.2.2]
$T_B \leq T < T_C$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$	
$T_C \leq T < T_D$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$	
$T_D \leq T$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2}\right)$	

Amplificazione topografica

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella Tab. 3.2.V, in funzione delle categorie topografiche definite nel § 3.2.2 e dell'ubicazione dell'opera o dell'intervento.

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1		1,0
T2	In corrispondenza della sommità del pendio	1,2
ТЗ	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza maggiore di 30°	1,4

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

Tipologie di accelerogrammi Artificiali: generati mediante algoritmi stocastici che generano accelerogrammi spettrocompatibili (es. software SISMQKE, Belfagor). (PRO perfetta spettrocompatibilità, CONTRO caratterizzati da un eccessivo numero di cicli di elevata ampiezza un contenuto energetico irrealistico)

Naturali: accelerogrammi registrati di eventi sismici reali

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

Gli stati limite, ultimi e di esercizio, possono essere verificati prediante l'uso di storie temporali del moto del terreno artificiali o naturali. Ciascuna storia temporale descrive una componente, orizzontale o verticale, dell'azione sismica; l'insie ne delle tre componenti (due orizzontali, tra loro ortogonali, ed una verticale) costituisce un gruppo di storie temporali del moto del terreno.

La durata delle storie temporali artificiali del moto del terreno deve essere stabilita sulla base della magnitudo e degli altri parametri fisici che determinano la scelta del valore di a_g e di S_s. In assenza di studi specifici, la parte pseudo-stazionaria dell'accelerogramma associato alla storia deve avere durata di 10 s e deve essere preceduta e seguita da tratti di ampiezza crescente da zero e decrescente a zero, in modo che la durata complessiva dell'accelerogramma sia non inferiore a 25 s.

Gli accelerogrammi artificiali devono avere uno spettro di risposta elastico coerente con lo spettro di risposta adottato nella progettazione. La coerenza con lo spettro di risposta elastico è da verificare in base alla media date ordinate spettrati ottenute con i diversi accelerogrammi, per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun purto del maggiore tra gli intervalt 0,15s ÷ 2,0s e 0,15s ÷ 2T, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati linite ultimi, e 0,15s ÷ 1,5 1, per le verifiche agli stati limite di esercizio. Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervalte di coerenza è assunto pari a 1,2 T_{is}, essendo T_{is} il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

Le storie temporali del moto del terreno registrate devono essere selezionate e scalate in modo tale che i relativi spettri di risposta approssimino gli spettri di risposta elastici nel campo dei periodi propri di vibrazione di interesse per il problema in esame. Nello specifico la compatibilità con lo spettro di risposta elastico deve essere verificata in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi associati alle storie per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10% ed uno scarto in eccesso superiore al 30%, rispetto alla corrispondente componente dello spettro elastico in alcun punto dell'intervallo dei periodi propri di vibrazione di interesse per l'opera in esame per i diversi stati limite.

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

C3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

Al fine di soddisfare i suddetti requisiti di spettro-compatibilità, i segnali registrati possono essere scalati linearmente in ampiezza. È tuttavia opportuno contenere il fattore di scala in un intervallo limitato in modo da non alterare eccessivamente i segnali e renderli incompatibili alla magnitudo e alla distanza dalla sorgente degli eventi sismici a cui sono riferiti.

In generale, ciascuna registrazione sismica è costituita da due componenti del moto in direzione orizzontale e una componente in direzione verticale. Mentre in linea di principio è possibile ottenere, differenziando tra loro i fattori di scala, la spettro-compatibilità per ciascuna componente del moto, in pratica può essere opportuno utilizzare un unico fattore di scala per le due componenti orizzontali, selezionato in modo da rendere la risultante delle azioni sismiche nel piano orizzontale compatibile con lo spettro risultante. Uno dei possibili metodi per ottenere questo risultato comprende le seguenti operazioni:

- 1. per ogni coppia di registrazioni orizzontali, si costruisce uno spettro SRSS, dato dalla radice quadrata della somma dei quadrati degli spettri di ogni componente;
- 2. lo "spettro medio SRSS" è pari alla media degli spettri SRSS di ciascuna coppia di accelerogrammi, appartenente al medesimo gruppo di storie temporali;
- 3. le coppie di registrazioni, nel numero indicato dalla norma, devono essere selezionate e scalate in modo tale che lo spettro medio SRSS approssimi, secondo i criteri di coerenza spettrale di norma, lo "spettro di riferimento", dato dal prodotto dello spettro elastico di progetto per un opportuno coefficiente .

Il valore del coefficiente è in genere non superiore a 1,3 che corrisponde alla risultante di due componenti il cui rapporto è circa pari a 0,85. Tuttavia, nel definire la coerenza spettrale, con particolare riguardo al rapporto fra le componenti accelerometriche, in assenza di studi sismo-tettonici specifici che giustifichino scelte differenti, si deve adottare un valore limite per il coefficiente pari a $\sqrt{2}$, ovvero la risultante di due componenti uguali tra loro, come specificato al §3.2.3.1 della norma.

Si vuole studiare la Risposta Sismica Locale per la realizzazione di una costruzione con livelli di prestazioni ordinari e classe d'uso II sul sito di coordinate (Comune di Latina 41.467, 12.905) caratterizzato da una condizione stratigrafica riconducibile ad uno schema di strati orizzontali e piano campagna orizzontale.

-								
	z (m)	Vs (m/s)	Hi/Vsi (s)	$\gamma_{sat} (kN/m^3)$	IP	OCR	φ (°)	
	0.0	220.0						
	2.4	220.0	0.011	22.0	30.0	1.1	27.0	limi sabbioso-argillosi
	2.4	340.0						
	3.9	340.0	0.004	21.0	0.0	1.0	33.0	sabbie poco addensate
	3.9	230.0						
	6.3	230.0	0.010	21.5	50.0	1.0	24.0	argille
	6.3	530.0						
	16.3	530.0	0.019	21.0	0.0	1.0	37.0	sabbie addensate
	16.3	850.0						bedrock
	40.0	850.0		21.0				ξ=0.5%

🖞 https://esse1-gis.mi.ingv.it

a, A° ☆ C

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Modello di pericolosità sismica MPS04-S1

< ୯ ଇ	🗇 h	ttps://itaca.mi.ingv.it/ltacaNet_32/#/rexel		R A 🖈 🗘 🕫 🧠 🤇
ISTELED AAZ DAALE DI GEOFISICA E VILLEANDLORD		REXELweb		P Glossand S Contattad ITA ENG 🔬 🙏 Manuale Utente
# Homepage		Spettru Larget Selezione preliminare	Spettro-compatibilità Affina ricerca	Mappe Figura Target Figura Selezione preliminare Figura Spettro-compatibilità
E info	<u>14</u>	Componente 1 componente oriziontale v	Limite Classe di sito desunta Si Classe di sito desunta si contra	-Sommario
▲ Starioni		Tipo Classe di sito	Categoria Sito	120
OC Servizi WEB		741-4 7264	Tips di strumente - Massanlame facala	100
💩 Produtti	1.5	0.350 ~ 2.000 ~	Qualunque ~ Qualunque ~	TT 80
🖈 Strumenti	14	CRITERIO		EV Jacob
E Documenti	26	Magnitudo-Distance	~ (
III Noticie		Tipo di magnitudo Magnitudo momente e locale ~		
		M minima	M massima	20
		4	7.5	
		R minima [km]	R massima (km)	0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
		10	120	Periodo.(s) — Spettro Target Orizzontale Spettro Target Verticale
			Asserti	
		NUCVA	RICERCA	

	0	a a h	ttps://i	itaca.mi.	ingv.it/	ltacaNet.	32/#/h	i laxe								Q A* 🛧 CD 🕼 🐇 🧐 …
	ESTITUTO NAZOO DI BERFISICA E VILCO	AULE ANCLOSIA	REXE	Lweb												a Glossario 🖀 Contattaci 🖬 Evg. 😥 🌽
	w Homepage	8		Epetten Ta	and a	Selection	ans profi	minare	3	Spettro-comp	atibilità	,Α	tina ricer	68		Mappo Figura Target Figura Soletione preliminare Figura Spettro-compatibilità
	1 into	14	T	olleranza	interio	re Tol	lleranza seriore P	4.1	1	11 [s]		TZ [s]				Sommarka
	++ Forme d'a	nda		10		35))	99.		0.130000	*	2.00	0000	¥.		E E
	(@ Eventl															100
	▲ Stationi		Ť	olleranza	aggiun	(iva (%)		Di de	imensik illa	me Num	iro di con	nbinazi	oni			
	o¢ Servizi WE	1						co	imbina.	- Cont						400 K
	& Prudatti	(4)	0	pzione d	scalatu	ra	Ve	ifica Pt			Massir scalati	no Fatt ura	ore di			स
	≠ Strumenti	145									5					
	Documenti	s – S a r														
	III Notizie							NU	OVA ENC	ERICA						E A A
ranori	r seissionares 7 rei monerat (1 94) Purchagasc Is fi							land and					here	e det Di	Samurito	100
-	Conjunation A	ano a	- 2000a 1985- 1	Dates record		2010/00/00	titing) tra	14. 3	uw T	Tyrngini Sgla	Decese optimized	100	-	farmed a	fytaan at note 1	
	NUMBER OF THE	EMSC 2711/1215 (120000)		- MONH		10		53	100.5					6.0.00	11100	
1	W/MDAEUHLENISC	EMSC 27191305 DEDRM		MOM		in.	N	5.5	19	Revailiaites.	ns.			NOTE	8.1.000	Perindo fal
	IT ALT IN THEIR TARE ANT -	IT-1862-0013	*	ALT	80.	181		43	60	formal liables	214	A.	1000	6.0.368	611.000	- Spettro Target Orizontale - Tollet and inferiore/superiore
1	IV.11272 ARLENGE	EMSC-20181030-0000005		1012		185	2	2.6	5.9	Annalising	18.0			0.0.200	61100	
,	11 MARIE OF HIS PMAC	EMIC 2011/1005_000000		MH.	(m.)	10	N.	-	100.7	Annullaring	19.4	w.	100	100.000	11.1.000	
r.	NJEMA, HULMOC-	PMINE OFFICER OFFICER		PEDIA.		ide.	-	1.1	8.0	Terral balling	-			1+0.411	911.000	
	W.TLESE, HPL INSC.		2			2	-	10	1	1	-	1		1.111		

Accelerogramma 01

Accelerogramma 02

Accelerogramma 03

Accelerogramma 04

Accelerogramma	PGA _{rec} (g)	t _{PGArec} (s)	PGA _d (g)	FA
1	0.057	16.98	0.075	1.31
2	0.085	11.50	0.075	0.88
3	0.189	14.13	0.075	0.40
4	-0.119	26.21	-0.075	0.63
5	-0.127	26.47	-0.075	0.59
6	0.068	15.56	-0.075	-1.10
7	-0.149	26.34	-0.075	0.50

Accelerogramma 05

0.08

0.06

0.02

-0.02

e .0.04

-0.06

-0.08

0.2

0.15

⊕ 0.1

0.05

-0.05

ũ .0.1

-0.15

-0.2

0

Accelerogramma 07

10

20

0

15.56

registrato

70

70

50 60

50 60

26.34; -

tempo - t (s)

30 40 registrato

ieral Settings Soil Types	Soil Profile Motion(s) Output Specification Compute Results	
oject		Type of Analysis
tie:		Method: Equivalent Linear (EQ.)
obes:		Approach: Time Series
		Stary the properties
		Site Property Variation
		Number of Vesilizations: 100
		Vary the nonlinear properties
		- shear-madulus reduction surve - denoting ratio corve - demoting of the bedrock
		Story the site profile
		shear-warve velocity layer thickness depth to bedrock
		Calculation Parameters
		Error tolerance: 2.0 % 0
		Maximum number of iterations: 10
		Effective strain ratio: 0.65
		Layer Discretization
enome prefix:		Maximum frequency: 20 Hz
its: Metric	 Note: only changes labels and gravity, no unit conversion. 	Wavelength fraction: 0.20
Since mot	Ion data within the input Ne.	Disable auto-discretization

Anna I I I I I	our Hundow Heih					
teres in the second	10 2 2 S	0				
General Set	tings Sol Types So	Profile Motion(s) Out	put Specification Compute	e Results		
Sol Types				Darendeli and Stokoe N	odel Paramet	bers
Name	Unit Weight (kN/m*)	G/G_max Model	Damping Model	Notes Hean effective atress	0.30 atm	8
1 01	22.00	Vucetic & Dobry, PI = 30	Vucetic & Dobry, PI = 30	Plasticity index	0	
2 02	21.00	Seed & Idriss, Sand Mean	Seed & Idriss, Sand Mean	Cuer Concording to the Concord	0.1.00	2
	1			Number of cycles:	L	-
3 03	21.50	Vucetic & Dobry, PI = 50	Vucetic & Dobry, PI = 50			
4 04	21.00	Seed & Idriss, Sand Mean	Seed & Idriss. Sand Mean	Nonanear Property		_
Bedrock La	NAKI.			Week Table Decth		

💃 C:/Users/Erminic/Desktop/RSL Latina/Latina.strate - Strata

Elle Edit Tools Window Help

A COLUMN TO A COLUMN			1.00	1 million in	-	-
and the second second	2 A 100 A 1		and the second	ALC: NO		10.0
A COLUMN	- Innerth I	1000	-	TRANS IN		100
		_	_	the second se	-	-

General Settings Soil Types Soil Profile Motion(s) Output Specification Compute Results

Site Profile

t

Depth (m)	Thickness (m)	Soll Type	Vs (m/s)
1 0.00	2.40	01	220.00
z 2,40	1.50	02	540.00
3 3.90	2.40	03	230.00
4 6.30	10.00	04	530.00
5 16.30	Half-Space	Bedrock	850.00

- 0 ×

C/Users/Erminio/Desktop/RSL_Latina	/Latina.strata - Strat	a .				- 0
File Edit Tools Window Help						
🖶 🗋 🖬 🖎 🚵 🛃 🖷	. 0					
General Settings Soil Types Soil P	rafie Motion(s)	Output Spe	cification G	ipute Repuits		
Hotion Input Location						
Specify the location to input the motion(s): Bedrock	E.				
Input Motions						
View						
Name	Description Typ	e PGA (g) PGV (cm/s)	Scale Factor		
1 😡 02-scalati-strata\01-Latina.txt	Oute	op 0.08	8.24	1.00		
2 🖸 02-scelati-strate\/02-Letina.txt	Outer	op 0.08	8.56	1.00		
3 🧧 02-scalati-strata\03-Latina.txt	Outo	op 0.08	3.64	1.00		
4 🖸 02-scalati-strata04-Latina.txt	Outo	60.0 qo	5,14	1.00		
5 🗖 02-scalati-strata\05-Latina.AT2	Outc	op 0.05	4.02	1.00		
6 🔜 02-scalati-strata\06-Latina.A72	Outer	op 0.08	6.34	1.00		
7 📴 02-scalati-strata\07-Latina.A32	Outo	op 0.88	6.20	1.00		

itrata - Strata		- 0 ×
0		
Motion(s) Output Specific	ation Compute Results	
er Spectra Ratios Sol	Types	Response Spectrum Propertier
		Damping: 5.0 %
Profiles Time Serie	s Response and Pourier Spectra Ratios Soil Types	Minimum: 0.01 s
Name	Location Type Baseline Correct	Maximum: 5.00 s
1 Acceleration Time	Series 0.00 m Outcrop	Point count: 64
		Spacing: Log -
	Profiles Time Series Response and Fourier Spectra Ratios Soil Types	Frequency Properties
	The second se	Minimum: 0.05 Hz
	Name Location Type	Maximum: 50.00 Hz
	1 Acceleration Response Spectrum 0.00 m Outcrop	Point count: 512
	2 Fourier Amplitude Spectrum 0.00 m Outcrop	Specing: Log -
		Logging Properties
		Logging level: Low -
	Drofiles Time Series Desponse and Equilar Sparting Dating Soil Tunas	
	Fromes Time Series Response and rouner spectral Racios Soli Types	
	Name Location 1 Type 1 Location 2 Type 2	
	t Analysis Tracks Franks 0.00 m O track Badada Outana	
	Acceleration Transfer Function 0.00 m Outcrop Bedrock Outcrop	
e	rata - Strata Motion(s) Cutput Specific r Spectra Ratios Sol Profiles Time Serie Name 1 Acceleration Time	Insta - Strata Motion(s) Output Specification Compute Results r Spectra Ratios Sol Types Name Location Type Baseline Correct Name Location Type Baseline Correct Receiveration Time Series Response and Fourier Spectra Ratios Soil Types Name Location Name Location Name Location Type Ratios Soil Types Name Location Type Ratios Soil Types Name Location Type Ratios Soil Types Profiles Time Series Response and Fourier Spectra Ratios Soil Types Name Location 1 Type 1 Location 2 Type 2 Name Location 1 Type 1 Location 2 Type 2 Spectral Pation 0.00 m Outcrop Redrock

DELLA PROVINCIA D VITERBO

GRAZIE PER L'ATTENZIONE