Università degli Studi "Roma Tre" Dipartimento di Scienze Corso di Laurea in Scienze Geologiche

MODULO DIDATTICO

Indagini ambientali e bonifiche delle aree contaminate

Elementi di base

ROBERTO CECCARINI

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

GEOLOGIA IDROGEOLOGIA GEOFISICA GEOCHIMICA MINERALOGIA PETROGRAFIA **GEOMORFOLOGIA** GEOTECNICA RILIEVO/INDAGINE DI CAMPO MODELLIZZAZIONE PIANIFICAZIONE/PROGETTAZIONE

ESISTE UN CAMPO DI STUDI/LAVORO CHE CONSENTE DI APPLICARE ED APPROFONDIRE GLI INSEGNAMENTI FONDAMENTALI DEL CORSO DI LAUREA IN SCIENZE GEOLOGICHE?

....Sì

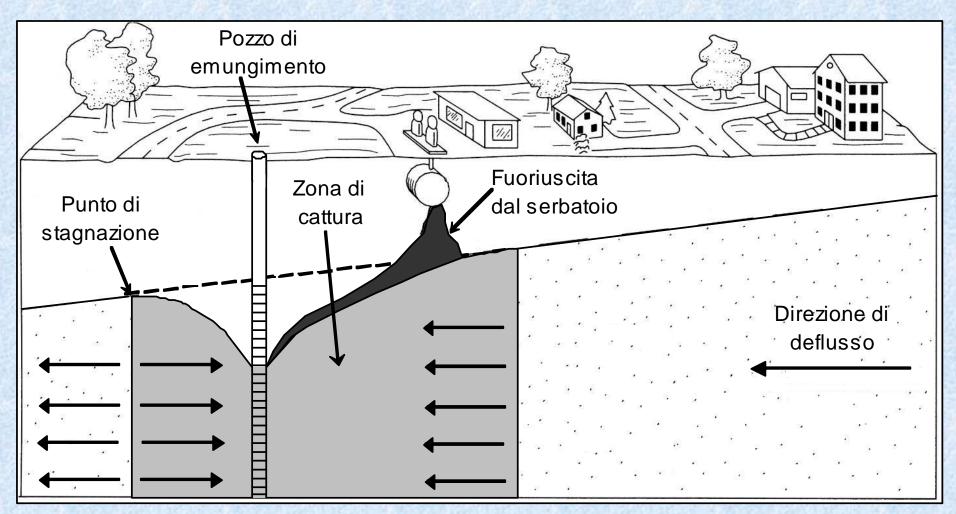
LO STUDIO E LA PIANIFICAZIONE PER IL
RECUPERO AMBIENTALE DI SUOLO E
SOTTOSUOLO (SATURO ED INSATURO)
IN AREE CONTAMINATE O
POTENZIALMENTE TALI

COSA SI INDICA CON IL TERMINE "AREA CONTAMINATA"?

UN SITO NEL QUALE UNO O PIÙ VALORI DI CONCENTRAZIONE DELLE SOSTANZE INQUINANTI RILEVATE NELLE MATRICI AMBIENTALI (SUOLO, SOTTOSUOLO E **ACQUE SOTTERRANEE) RISULTANO** SUPERIORI AI VALORI NORMATIVI DI RIFERIMENTO

COME POSSO DEFINIRE LO STATO QUALITATIVO DI UN'AREA?

I PASSI DA EFFETTUARE SONO NORMATI
ED ESPLICITATI NEL TITOLO V DELLA
PARTE QUARTA DEL D.Lgs. n. 152 del
2006 ("Testo Unico Ambientale") e
ss.mm.ii.


COME SI PROCEDE?

- 1. Messa in Sicurezza d'Emergenza "MISE" (se necessaria)
- 2. Piano della Caratterizzazione "PdC":
 - caratterizzazione del sottosuolo
 - caratterizzazione dei contaminanti
 - Modello concettuale della contaminazione
- 3. Analisi di rischio -"AdR"
- 4. Progetto (preliminare e definitivo) di Bonifica o Messa in Sicurezza Permanente
 - obbiettivi di bonifica
 - metodologie e tecniche di bonifica

MISE, COME SI PROCEDE?

- 1) Rimozione della sorgente primaria della contaminazione:
 - Aspirazione liquami; asportazione dei terreni visibilmente contaminati; rimozione prodotti sversati o abbancati, ecc.
- 2) Isolamento della sorgente primaria dalle matrici ambientali circostanti (evitare la veicolazione verso l'esterno), p.e.:
 - allontanamento delle acque meteoriche;
 - copertura del corpo inquinante con teli di idonee caratteristiche (resistenza meccanica e ad agenti chimici);
 - attivazione di sistemi di recupero delle acque sotterranee;
 - cattura dei prodotti in libero galleggiamento.
- 3) Limitare l'accesso all'area (delimitazione, divieto di accesso e pericolo).
- 4) Comunicazione agli enti di controllo illustrante l'accaduto e le operazioni di MISE attivate.

MISE, ESEMPIO?

PdC, PRATICAMENTE?

Pianificazione ed esecuzione di un'indagine ambientale, ovvero, l'insieme di verifiche atte a valutare lo stato di qualità delle matrici ambientali: suolo, sottosuolo e, eventualmente, acque sotterranee

STRUTTURA DEL PdC

- 1. Raccolta e sistematizzazione dei dati esistenti
- 2. Formulazione del Modello Concettuale Preliminare della contaminazione
- 3. Piano di investigazione iniziale

IL PdC

- A. Definizione spaziale del Sito (contesto geografico, antropico e suo perimetro)
- B. Definizione del contesto (da dati bibliografici o studi pregressi) per:
 - geologia (litologia, spessori, chimismo, assetto strutturale, ecc.)
 - idrogeologia (numero e tipologia acquiferi, soggiacenza, spessori, deflusso, caratteristiche idrauliche)
 - Geomorfologia (forme e fenomeni attivi).

IL PdC

- C. Descrizione dettagliata del sito e di tutte le attività che si sono svolte o che ancora si svolgono al suo interno e nelle aree circostanti (produzione, stoccaggi, monitoraggi delle matrici ambientali, indagini pregresse)
- D. Descrizione delle principali caratteristiche dei contaminanti:
 - Stato fisico
 - Condizioni chimico-fisiche
 - Composizione chimica

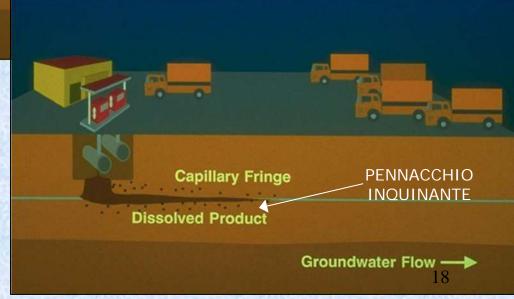

E' FONDAMENTALE CONOSCERE LE PRINCIPALI CARATTERISTICHE DEI CONTAMINANTI

- viscosità: capacità della sistanza di penetrare in un mezzo poroso e quindi di raggiungere la superficie freatica.
- volatilità: caratterizza l'equilibrio tra fase liquida e fase vapore della sostanza (dipende dalla cost. di Henry di ogni sostanza)
 - Volatile Organic Compounds (VOCs): BTEX, MTBE e alifatici alogenati (p. es. cloroformio).
- solubilità: grado di miscibilità in acqua
 - scarsamente poco o per nulla miscibili e definibili come Non Aqueous Phase Liquids (NAPLs).

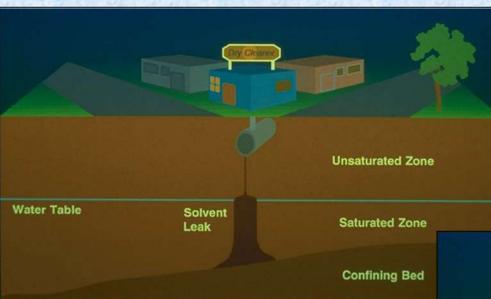
· densità:

- minore dell'acqua (LNAPLs): benzine, gasolio, kerosene, BTEX, MTBE;
- maggiore dell'acqua (DNAPLs): IPA, solventi clorurati (tricloroetilene, cloroformio, tetracloroetilene, ecc).

Esempio, caratteristiche dei contaminanti Prodotti più leggeri dell'acqua (LNAPLs), densità <1 g/cm³



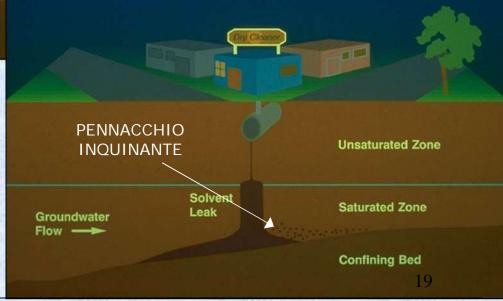
Fase 3.


3. presenza di alimentazione, aumento di spessore del surnatante, incurvatura della superficie piezometrica, trascinamento in direzione di deflusso della falda.

Fasi 1. e 2.

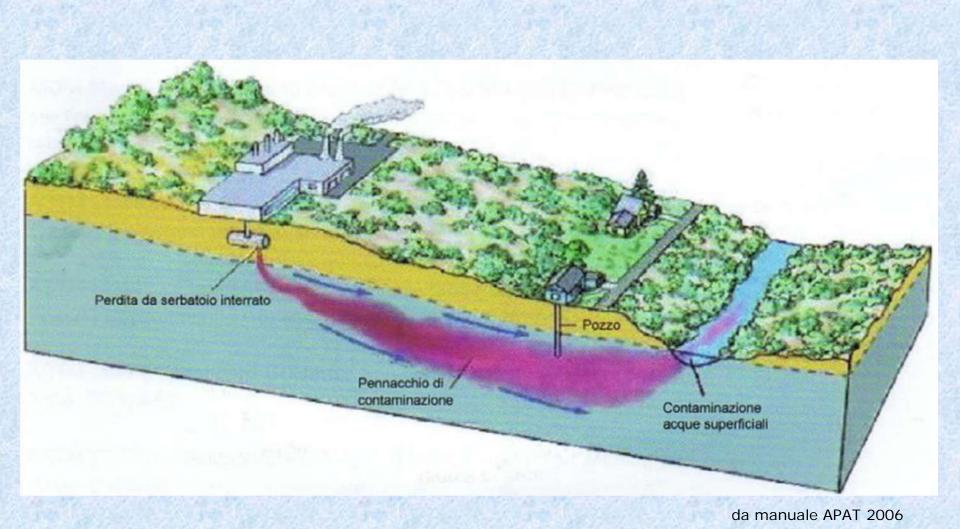
- allargamento zona di contaminazione;
- distribuzione sopra frangia capillare continua (prodotto surnatante).

Esempio, caratteristiche dei contaminanti Prodotti più pesanti dell'acqua (DNAPLs), densità >1 g/cm³



Fase 3.

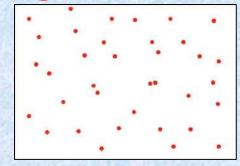
3. movimento del fluido controllato dall'inclinazione del livello a bassa permeabilità; flusso possibile anche nel senso opposto alla pendenza.


Fasi 1. e 2.

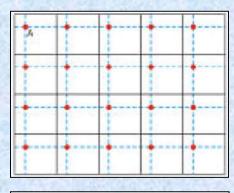
- approfondimento del prodotto in falda;
- il fluido affonda fino in prossimità di un livello a bassa permeabilità.

Modello Concettuale preliminare descrive:

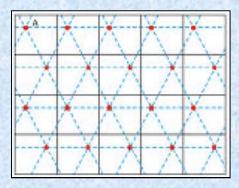
- sorgenti, possibilmente grado ed estensione della contaminazione del suolo, del sottosuolo, delle acque superficiali e sotterranee del sito;
- percorsi di migrazione dalle sorgenti di contaminazione ai bersagli ambientali e alla popolazione (acque sotterranee, superficiali, aria);
- le vie di esposizione (inalazione, ingestione, contatto dermico);
- i bersagli ambientali e la popolazione su cui possono manifestarsi gli effetti dell'inquinamento.

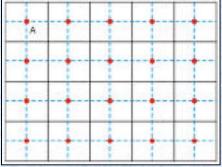

IL PdC, il Piano d'indagine

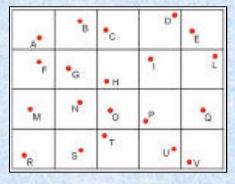
Criteri con cui procedere all'ubicazione dei punti di campionamento:


- <u>campionamento soggettivo</u>, basato sul modello concettuale preliminare;
- campionamento casuale semplice;
- campionamento sistematico o su griglia regolare;
- campionamento a cluster adattativo;
- campionamento stratificato.

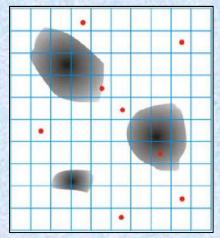
IL PdC, il Piano d'indagine


Campionamento casuale semplice

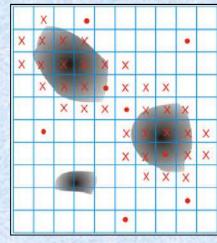

Campionamento sistematico


griglia quadrata allineata

griglia triangolare

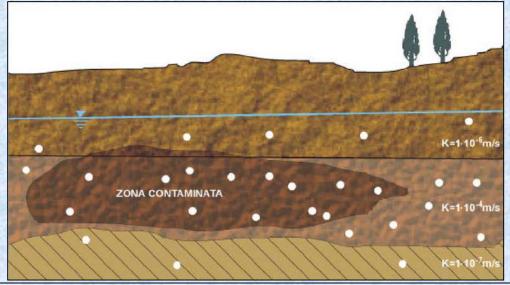


griglia quadrata centrata



IL PdC, il Piano d'indagine

Campionamento a cluster adattativo



Campionamento iniziale

Distribuzione finale

<u>Campionamento</u> <u>stratificato</u>

IL PdC, l'Investigazione

SONDAGGI

- Carotaggio continuo a secco, a rotazione e bassa velocità o a rotopercussione
- Estrusione delle carote a secco
- Decontaminazione del carotiere

Indagini ambientali e bonifiche delle aree contaminate - Elementi di base

IL PdC, l'Investigazione

PIEZOMETRI (tubo aperto)

• Alesaggio del foro di sondaggio

• Completamento realizzato mediante tubi ciechi e tubi filtranti in PVC per uso alimentare

• Realizzazione, nell'intercapedine foro/tubo, di un manto drenante con ghiaino nel tratto

filtrato e tappo bentonitico nel tratto cieco

IL PdC, l'Investigazione

Campionamento TERRENI

Formazione del campione per analisi composti organici volatili: Prelievo immediato e inserimento in una vial

- Prelievo del terreno con una paletta di acciaio e trasferimento su di un telo impermeabile
- Omogeneizzazione del campione
- Quartatura del campione e inserimento dello stesso all'interno di barattoli in vetro

IL PdC, l'Investigazione

Campionamento ACQUE DI FALDA

- Misura del livello statico e della effettiva profondità del piezometro
- Rilievo dell'eventuale presenza di sostanze non miscibili con l'acqua (surnatante e/o sottonatante)
- Inserimento della pompa e avvio delle operazioni di spurgo e campionamento con tecnica a basso flusso (low-flow) (<51/m)
- Misurazione in continuo dei parametri chimico-fisici e prelievo dei campioni

Sonda interfaccia acqua/olio

Pompa basso flusso

Campionamento di gas interstiziali (VOCs e SVOCs)

Campionamento attivo:

viene condotto mediante l'introduzione di punte o di sistemi di monitoraggio (analoghi ai piezometri) all'interno del mezzo non saturo e la successiva estrazione dei gas interstiziali con pompe.

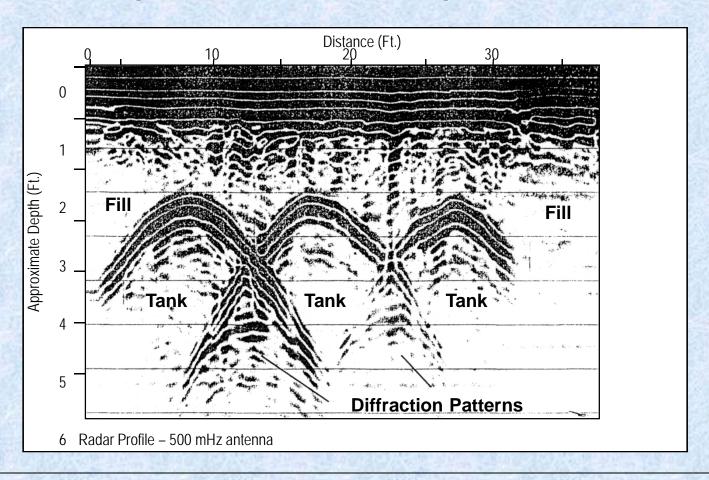
<u>Campionamento passivo:</u> basato sul flusso naturale del contaminante nel suolo verso il campionatore adsorbente.

Tale metodo costituisce una interessante tecnica di screening per valutare la presenza e l'estensione di una eventuale contaminazione associata a composti volatili nel sottosuolo.

Attrezzatura direct push manuale

Martello a percussione (elettrico o a scoppio) tipo Wacker®

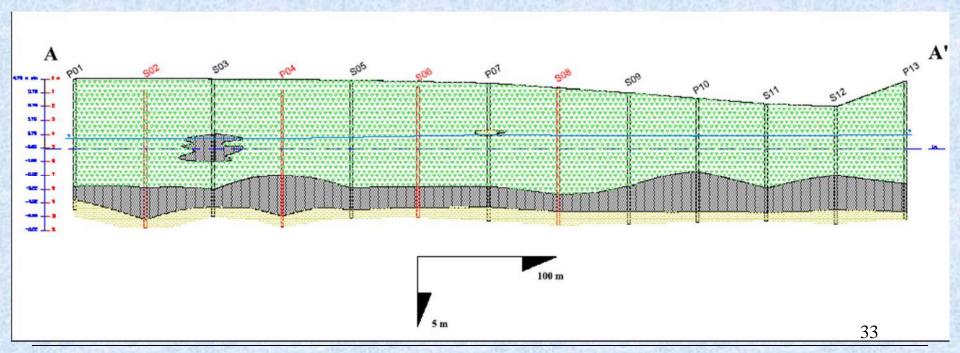
Tubazione in PVC


Batteria di aste

Attrezzatura direct push Geoprobe®

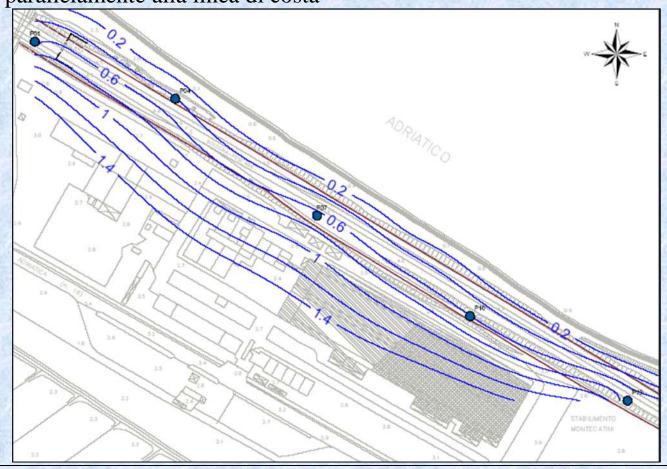
carotiere

Georadar GPR: profilo di cisterne sepolte


• Assetto stratigrafico locale

- Ghiaie da debolmente sabbiose a sabbiose sciolte
- Sabbie monometriche, sciolte e sature
- Argilla color grigio scuro, contenente gusci di gasteropodi, compatta e mediamente plastica

Assetto idrogeologico


L'acquifero, permeabile per porosità, è costituito dalle ghiaie sabbiose e dalle sabbie monometriche

L'acquifero è sostenuto da un litotipo a bassa permeabilità rappresentato dalle argille grigio scure plioceniche

Morfologia e deflusso della falda

L'acquifero descritto ospita una falda freatica, con un gradiente pari a 0,01 (10‰), che si distribuisce parallelamente alla linea di costa

CONFRONTO DEI DATI ANALITICI CON LE

Concentrazione di soglia di contaminazione (CSC)

Le CSC per le sostanze inquinanti presenti nel suolo, nel sottosuolo e nelle acque sotterranee, in relazione alla specifica destinazione d'uso del sito, nonché i criteri per la valutazione della qualità delle acque superficiali sono indicati nelle tabelle 1 (terreni) e 2 (acque di falda) dell'Allegato 5 al Titolo V della Parta Quarta.

	RIFERITI ALLA SPECIFI	Carlos Manager Land Hollands Manager Programmer	JSO DEI SITI DA							
	BONIFICARE									
		A	В							
		Siti ad uso Verde pubblico, privato e residenziale (mg kg ¹ espressi come ss)	Siti ad uso Commerciale e Industriale (mg kg ⁻¹ espressi come ss)							
	Composti inorganici									
1	Antimonio	10	30							
2	Arsenico	20	50 10 15 250							
3	Berillio	2								
4	Cadmio	2								
5	Cobalto	20								
6	Cromo totale	150	800							

N°. ord	SOSTANZE	Valore limite (μ /l)
	ME	TALLI
1	Alluminio	200
2	Antimonio	5
3	Argento	10
4	Arsenico	10
5	Berillio	4
6	Cadmio	5
7	Cobalto	50
8	Cromo totale	50
9	Cromo (VI)	5
10	Ferro	200

ACQUE SOTTERRANEE

Qualità dei terreni: Riscontrate n.4 eccedenze per l'Arsenico in aree ad uso industriale

PARAMETRO	Metodologia	U.M.	D.Lgs 152/06 all.5, tab.1	P01 (4,3-4,5)	503 (4,2-4,4)	SO5 (0,6-0,8)	SO5 (4,2-4,4)
NATA PRELIEVO:		-	-	24/04/2007	26/04/2007	27/04/2007	27/04/2007
ROFONDITA' DI CAMPIONAMENTO		m		4,3 - 4,5	4,2 - 4,4	0,6 - 0,8	4,2 - 4,4
		-		-		-	
CHELETRO	DM 13/09/99 GU N° 248 21/10/99 ALL II PARTE 1	% p/p		60,8	54,3	49,6	41,0
MIDITA'	DM 13/09/1999 GU Nº 248 21/10/1999 ALL II PARTE 2	% p/p	-	8,0	11,5	3,7	10,1
LUORURI	EPA 300.0 1993	mg/kg(su s.s.)	2000	195	190	< 10	160
RSENICO	EPA 7062 1994	mg/kg(su s.s.)	50	410,0	630,0	55,0	84,0
ADMIO	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	15	0,5	0,4	2,6	0,3
OBALTO	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	250	3,7	7,5	17,0	3,1
ROMO ESAVALENTE	CNR IRSA 16 Q 64 VOL 3 1986	mg/kg(su s.s.)	15	< 0,5	< 0,5	< 0,5	< 0,5
ROMO TOTALE	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	800	8,4	29,0	29,0	14,3
ERRO	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	-	6.500	16.300	69.000	6,500
MANGANESE	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)		400,0	1.310	420,0	410,0
MERCURIO	EPA 3050 B 1996 + EPA 7471 B 1998	mg/kg(su s.s.)	5	0,60	1,30	< 0,1	1,7
ICHEL	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	500	7,5	23,0	10.2	9,5
OBMOI	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	1000	4,7	17.0	220.0	5,7
INCO	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	1500	116,0	171,0	270,0	30,0
AME	DM 13/09/1999 GU N°248 21/10/1999 MET.XI.1	mg/kg(su s.s.)	600	35,0	48,0	220,0	14,2
COMPOSTI ORGANOALOGENATI	EPA 5021 1996 + EPA 8260 B 1996	-(-)		-			
COMPOSTI ALIFATICI CLORURATI CANCEROGENI	EPA 5021 1996 + EPA 8260 B 1996	-(-)		-			-
LOROMETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	5	< 0.01	< 0,01	< 0.01	< 0.01
ICLOROMETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	5	< 0.01	< 0,01	< 0.01	< 0.01
LOROFORMIO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	5	< 0.01	< 0.01	< 0.01	< 0.01
LORURO DI VINILE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	0.1	< 0.01	< 0.01	< 0.01	< 0.01
.2-DICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	5	< 0,01	< 0.01	< 0.01	< 0.01
.1-DICLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	1	< 0.01	< 0.01	< 0.01	< 0.01
.2-DICLOROPROPANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	5	< 0.01	< 0.01	< 0.01	< 0.01
.1.2-TRICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	15	< 0.01	< 0.01	< 0.01	< 0.01
RICLORGETILENE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	10	< 0.01	< 0.01	< 0.01	< 0.01
2.3-TRICLOROPROPANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	1	< 0.01	< 0.01	< 0.01	< 0.01
.1.2.2-TETRACLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	10	< 0.01	< 0.01	< 0,01	< 0.01
ETRACLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	20	< 0.01	< 0.01	< 0.01	< 0.01
SACLOROBUTADIENE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	-	< 0,01	< 0,01	< 0,01	< 0,01
COMPOSTI ALIFATICI CLORURATI NON CANCEROGENI	EPA 5021 1996 + EPA 8260 B 1996	-(-)				. 0,01	
.1-DICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	30	< 0.01	< 0.01	< 0.01	< 0.01
2-DICLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	15	< 0.01	< 0,01	< 0.01	< 0.01
.1.1-TRICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	mg/kg(su s.s.)	50	< 0,01	< 0,01	< 0,01	< 0,01
DROCARBURI < C12	EPA 5021 1996 + EPA 8015 D 2003	mg/kg(su s.s.)	250	< 5	< 5	< 5	
DROCARBURI > C12	ISO TR 11046:1994 MET B	mg/kg(su s.s.)	750	< 5	< 5	< 5	36

Risultati della caratterizzazione

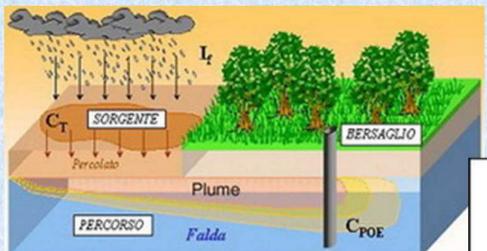

Qualità delle acque di falda

Tabella 4 - Risultati analitici campioni di acqui

			D.M.471/99:					
Parametro	Metodologia	U.M.	TABELLA ACQUE SOTTERRANEE	P01	P04	P07	P10	P13
Data prelievo	-	-		31/05/2007	31/05/2007	31/05/2007	31/05/2007	31/05/2007
Profondità di campionamento				5,5 m				
				sul campione tal quale				
MIONI								-
LUCRURI	EPA 300.1 1997	µg/l	1500	1.000	400	4.700	1.100	200
#TRITI	APAT ONR IRSA 4050 MAN 29 2003	µg/l(come NO2)	500	140	100	120	40	30
OLFATI	EPA 300.1 1997	mg/l(come SO4)	250	340	101	270	195	115
METALLI								
OINOMITW	EPA 200.8 1994	µg/l(come Sb)	5	0,9	0,40	0,7	0,30	< 0,2
RSENICO .	EPA 200,8 1994	µg/l(come As)	10	3,4	1,5	3,1	2,4	< 0,1
ADMIO OIMO	EPA 200.8 1994	μα/li(come Cd)	5	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
ROMO	EPA 200.8 1994	ug/I(come Cr)	50	7,7	5,4	1,7	6,1	0,20
CROMO ESAVALENTE	APAT CNR IRSA 3150 82 MAN 29 2003	µg/1(come Cr)	5	< 0,5	< 0,5	< 0,5	< 0.5	< 0,5
ERRO	EPA 6010 C 2000	ug/l(come Fe)	200	3.100	2.800	1.210	2.200	340
MANGANESE	EPA 200.8 1994	μg/l(come Mn)	50	490	260	410	240	300
MERCURIO .	EPA 200.8 1994	μg/l(come Hg)	1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
#OHEL	EPA 200.8 1994	µg/l(come Ni)	20	21	12,4	16,7	7,7	4,5
10MB0	EPA 200.8 1994	μg/l(come Pb)	10	25	51	33	51	5,8
ELENIO	EPA 200.8 1994	µg/l(come Se)	10	8,0	< 0,5	< 0,5	< 0,5	< 0,5
INCO	EPA 200.8 1994	µg/l(come Zn)	3000	65	12,0	2,0	68	5,5
WHE	EPA 200.8 1994	μα/I(come Cu)	1000	6,3	7,2	1,5	3,6	1,10
COMPOSTI AROMATICI	EPA 5030 B 1996 + EPA 8260 B 1996	-(-)						
SENZENE	EPA 5030 B 1995 + EPA 8260 B 1995	µg/l	1	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
TILBENZENE	EPA 5030 B 1996 + EPA 8260 B 1996	μο/1	50	0,30	0,33	0,29	< 0,03	< 0,03
TIRENE	EPA 5030 B 1996 + EPA 8260 B 1996	µg/l	25	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2
TOLUENE	EPA 5030 B 1996 + EPA 8260 B 1996	µg/l	15	< 0,08	< 0,08	< 0,08	< 0,08	< 0,08
XILENE	EPA 5030 B 1996 + EPA 8260 B 1996	µg/l	10	0,10	0,10	0,09	< 0,06	< 0,06
DROCARBURI TOTALI (come n-esano)	EPA 5021 1996 + EPA 3510 C 1996 + EPA 8015 D 2003	µg/l	350	< 5	< 5	< 5	< 5	< 5
COMPOSTI ORGANOALOGENATI	EPA 5021 1996 + EPA 8260 B 1996	-(-)			*			
COMPOSTI ALIFATICI CLORURATI CANC.	EPA 5021 1996 + EPA 8260 B 1996	-(-)						
LOROMETANO	EPA 5021 1996 + EPA 8260 B 1996	µq/I	1.5	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
LOROFORMIO	EPA 5021 1996 + EPA 8260 B 1996	ug/I	0.15	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04
LORURO DI VINILE	EPA 5021 1996 + EPA 8260 B 1996	ug/l	0.5	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04
,2-DICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	µg/l	3	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
,1-DICLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	µg/l	0.05	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
,2-DICLOROPROPANO	EPA 5021 1996 + EPA 8260 B 1996	µg/l	0.15	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
,1,2-TRICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	µg/l	0.2	< 0,08	< 0,08	< 0,08	< 0,08	< 0,08
RICLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	μg/l	1.5	0,18	0,26	0,13	< 0,02	0,10
,2,3-TRICLOROPROPANO	EPA 5021 1996 + EPA 8260 B 1996	µg/1	0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
,1,2,2-TETRACLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	µg/1	0.05	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
ETRACLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	µg/1	1.1	0,98	2,26	0,50	< 0,05	1,44
SACLOROBUTADIENE	EPA 5021 1996 + EPA 8260 B 1996	µg/1	0.15	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
OMPOSTI ALIFATICI CLORURATI CANC. TOT.	EPA 5021 1996 + EPA 8260 B 1996	µg/l	10	1,16	2,52	<1	< 1	2174
COMPOSTI ALIFATICI CLORURATI NON CANC.	EPA 5021 1996 + EPA 8260 B 1996	-(-)						31
,1-DICLOROETANO	EPA 5021 1996 + EPA 8260 B 1996	µq/l	810	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
,2-DICLOROETILENE	EPA 5021 1996 + EPA 8260 B 1996	hā/J	60	< 0,06	< 0,05	< 0,06	< 0,06	< 0,06

Tramite i dati della caratterizzazione è possibile definire il Modello Concettuale Definitivo

- sorgenti, grado ed estensione della contaminazione del suolo, del sottosuolo, delle acque superficiali e sotterranee del sito;
- percorsi di migrazione dalle sorgenti di contaminazione ai bersagli ambientali e alla popolazione (acque sotterranee, superficiali, aria);
- vie di esposizione (inalazione, ingestione, contatto dermico);
- bersagli ambientali e la popolazione su cui possono manifestarsi gli effetti dell'inquinamento.

Esempio di modello concettuale.

E = Assunzione cronica giornaliera di un contaminante

T = Tossicità del contaminante

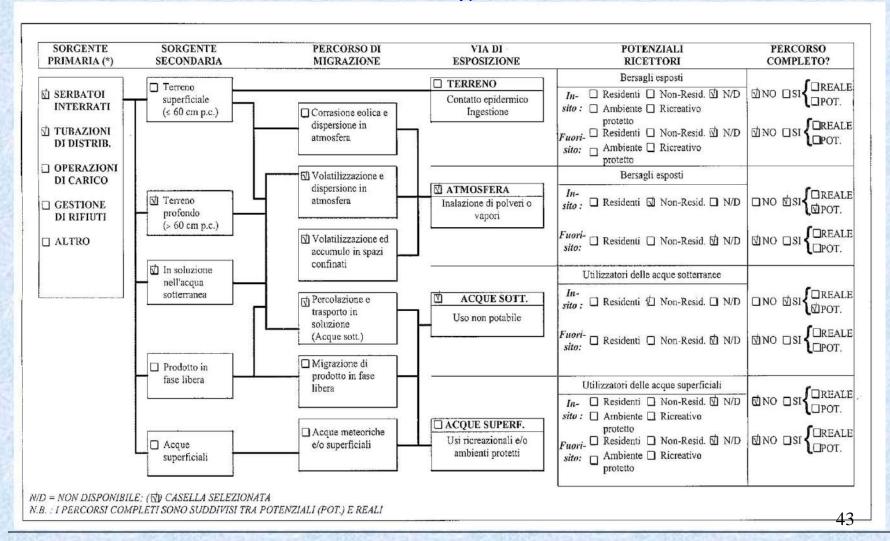
- Selezione dei contaminanti indice (COC): oltre le CSC
- Sorgenti: geometria
- <u>Vie di esposizione:</u> suolo superficiale, suolo profondo, aria outdoor, aria indoor.
- Modalità di esposizione: ingestione, contatto dermico, inalazione.
- <u>Recettori o bersagli della contaminazione:</u> persone on-site o off-site; residenti o lavoratori.
- Punto di conformità: limite della proprietà.

C'è rischio solamente se sussistono tre condizioni: una sorgente di contaminazione, un percorso di esposizione ed un recettore. Se viene a mancare una di queste non esiste il rischio bisogna eliminare la sorgente o interrompere il percorso di esposizione!

Valore di rischio incrementale accettabile:

- per le sostanze <u>cancerogene = 1·10-6</u>;
- per le sostanze non cancerogene = 1

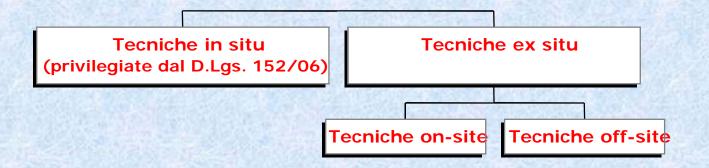
Le concentrazioni rilevate eccedono le CSR?:


NO → il sito non è contaminato, eseguo il monitoraggio;

Sì il sito è contaminato, bonifico o metto in sicurezza.

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

Analisi di Rischio - AdR


Schema di flusso sorgente ----- recettore

Progetto Preliminare di Bonifica Struttura tipo

- 1. Analisi dei livelli di inquinamento.
- Eventuale investigazione di dettaglio (p.es. esatta identificazione, perimetrazione, della sorgente).
- 3. Adozione delle CSR (obiettivo) definite con l'analisi di rischio.
- 4. Analisi delle possibili tecnologie adottabili per la bonifica o la messa in sicurezza del sito.
- 5. Descrizione delle tecnologie di bonifica scelte.
- 6. Eventuale test pilota on-site per la verifica tecnologie scelte.
- 7. Compatibilità ambientale degli interventi.
- 8. Piano di monitoraggio attivo anche post operam.
- 9. Confronto dei costi di realizzazione delle diverse tipologie.

Metodologie e tecniche di bonifica Classificazione in base all'ubicazione del trattamento

<u>Tecniche in situ:</u> terreni e acque vengono trattati direttamente sul posto, senza escavazioni o pompaggi.

<u>Tecniche ex situ:</u> terreni e acque vengono rimossi; le matrici ambientali possono essere trattate con impianti mobili in loco (<u>trattamenti on-site</u>) oppure in impianti fissi ubicati esternamente alla zona contaminata (<u>trattamenti off-site</u>). Il terreno trattato può essere riposto nel luogo di provenienza.

Rimozione e smaltimento

Non è un vero intervento di bonifica perché è un metodo "dig & dump"

Metodologie e tecniche di bonifica Classificazione in base sulle proprietà dei contaminanti

- Tecnologie basate sulla distruzione o sull'alterazione dei composti inquinanti: trattamenti biologici o fisici basati sulla modifica della struttura chimica degli inquinanti (applicabili in situ o ex situ).
- Tecnologie basate sull'estrazione dei composti inquinanti dall'ambiente: trattamenti che sfruttano alcune proprietà fisicochimiche degli inquinanti, realizzando processi di trasporto che ne permettono la separazione dalle matrici ambientali contaminate (applicabili in situ o ex situ).
- Tecnologie basate sul contenimento o l'immobilizzazione degli inquinanti nell'ambiente (applicabili in situ).
- Mix di tra più tecnologie per trattamenti misti.

Trattamenti biologici nei terreni

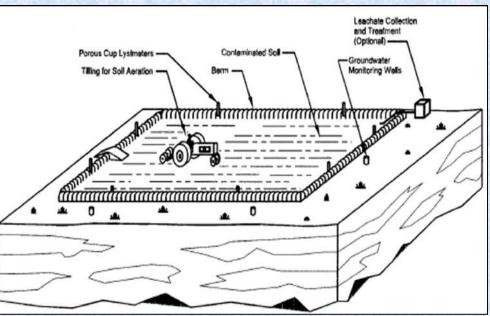
Sfruttano i microorganismi presenti nei terreni:

batteri, funghi, attinomiceti, alghe o protozoi.

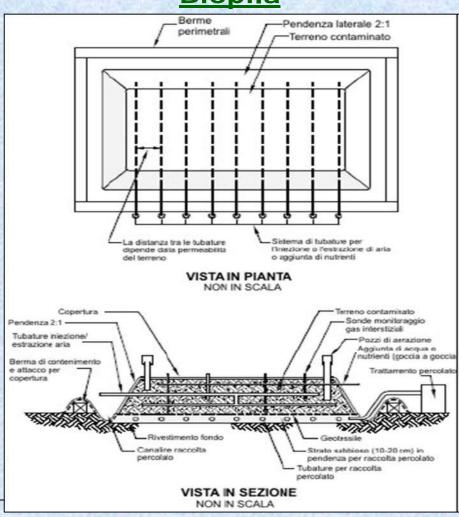
- Aerobici
- Anaerobici
- anaerobici facoltativi

Parametri utilizzati per la valutazione dell'applicabilità di una tecnica di risanamento biologica.

Caratteristiche del terreno	Caratteristiche dei contaminanti	Condizioni climatiche	
Densità della popolazione microbica	Volatilità	Temperatura ambiente	
pH del terreno	Struttura chimica	Piovosità	
Contenuto idrico	Concentrazione e tossicità	Vento	
Temperatura del terreno	6		
Concentrazione dei nutrienti			
Tessitura del terreno	17		


Biodegradabilità	Composti campione	Prodotti in cui si trovano i composti		
	n-butano, I-pentano n-ottano	Benzina		
Più degradabile	Nonano	Gasolio		
	Metil butano Dimetilpentene Metilottano	Benzina		
	BTEX	Benzina		
	Propilbenzene	Gasolio, cherosene		
	Decani	Gasolio		
	Dodecani	Cherosene		
	Tridecani	Combustibili per il riscaldamento		
Meno degradabile	Tatradecani	Oli lubrificanti		
	Naftaline	Gasolio		
	Fluoranteni	Cherosene		
	Pireni	Oli per riscaldamento		
	Acenafteni	Oli lubrificanti		

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base


Progetto Preliminare di Bonifica

Trattamenti biologici nei terreni

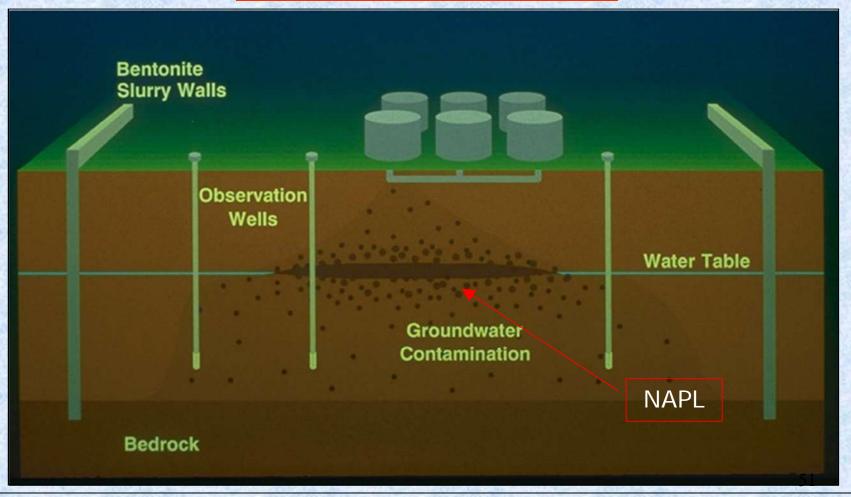
Landfarming

Principale differenza: metodo di ossigenazione **Biopila**

Progetto Preliminare Messa in Sicurezza Permanente

Contenimento fisico falda

Ottenuto realizzando barriere impermeabili K≅10-11 m/s


Spesso ancorati ad un acquiclude di base e/o ad una copertura superficiale (capping) con pozzi di estrazione.

Non rimuove la sorgente di contaminazione.

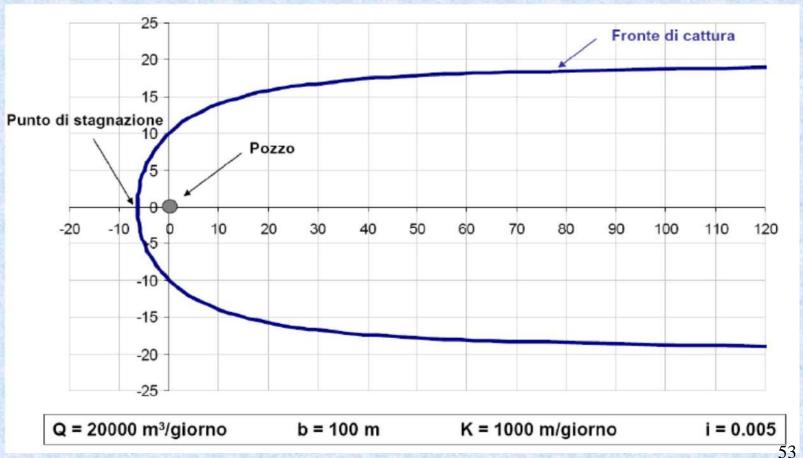
Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

Progetto Preliminare Messa in Sicurezza Permanente

Contenimento fisico falda

Progetto Preliminare di Bonifica Pump & Treat

Utilizzabile in Bonifica o per messa in sicurezza, con Pompaggio e Trattamento delle acque di falda

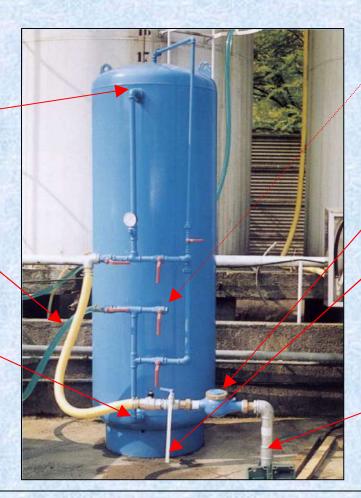

- messa in sicurezza: realizzazione di pozzi per il pompaggio di acqua contaminata per il contenimento di contaminate e sorgente difficili da rimuove;
- 2. bonifica: realizzazione di pozzi per il pompaggio di acqua contaminata fino a totale rimozione dell'inquinante.

Occorre definire:

- Caratteristiche idrogeologiche di dettaglio
- Estensione dell'area contaminata oggetto del barrieramento
- Ubicazione eventuali recettori da preservare
- Raggio e area d'influenza, punto di stagnazione.

Pump & Treat

Andamento del fronte di cattura di un pozzo



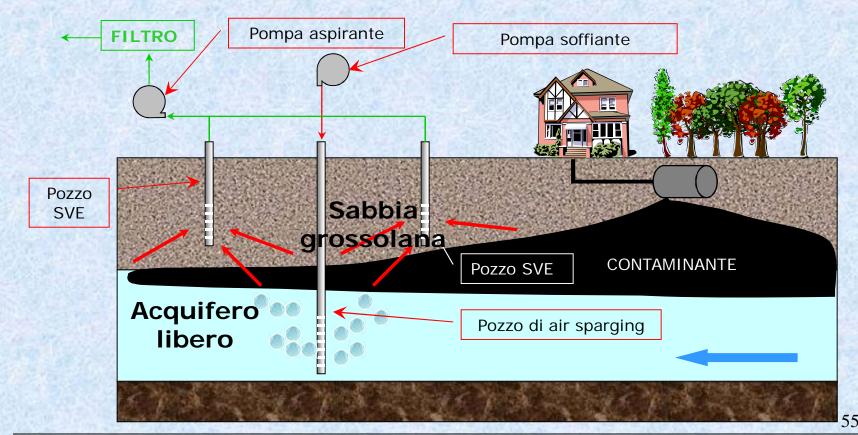
Pump & Treat

Ingresso filtro

Scarico

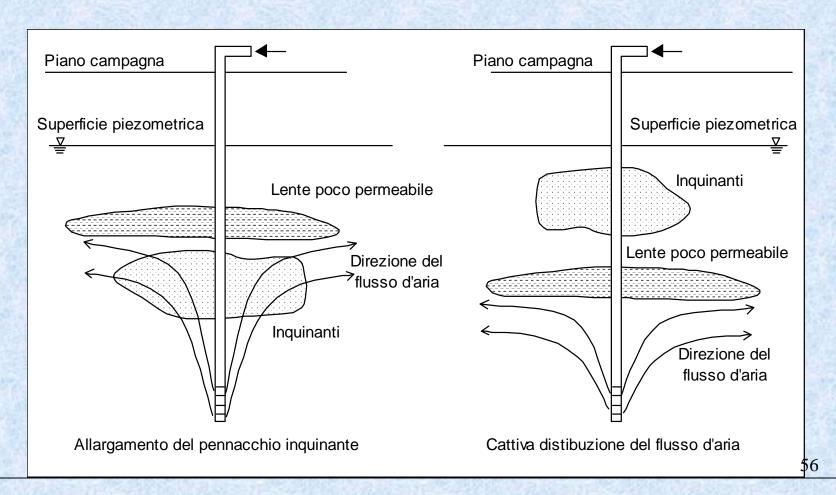
Uscita filtro

Rubinetto di prelievo acque in uscita


Contatore

Rubinetto di prelievo acque in ingresso

Tubazione di mandata


Progetto Preliminare di Bonifica Air sparging, Bioventing, Air Stripping

Immissione "aria" nella porzione satura (air stripping) e/o insatura (air sparging), immediatamente al di sotto del tratto contaminato. L'aria risale arricchendosi di composti volatili e semivolatili disciolti e li trasporta verso la superficie. Molto spesso abbinati a sistema di estrazione vapori (Soil Vapor Extraction) dalla porzione insatura.

Progetto Preliminare di Bonifica Air sparging

Sono determinanti le caratteristiche geologiche del mezzo

Progetto Preliminare di Bonifica In Situ Chemical Oxidation (ISCO)

Iniezione nel saturo di:

- Perossido di idrogeno H₂O₂
- Permanganato di potassio KMnO₄
- Persolfato di sodio Na₂S₂O₈

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

IV sezione IL PROGETTO PRELIMINARE DI BONIFICA

Metodologie e tecniche di bonifica tecniche innovative

Barriera permeabile reattiva (PRB)

<u>Diaframma chimicamente reattivo</u> posto all'interno dell'acquifero, <u>ortogonale alla direzione di deflusso</u>. Il materiale reattivo viene posto all'interno di trincee e produce la degradazione, la trasformazione, la precipitazione o l'adsorbimento del contaminante.

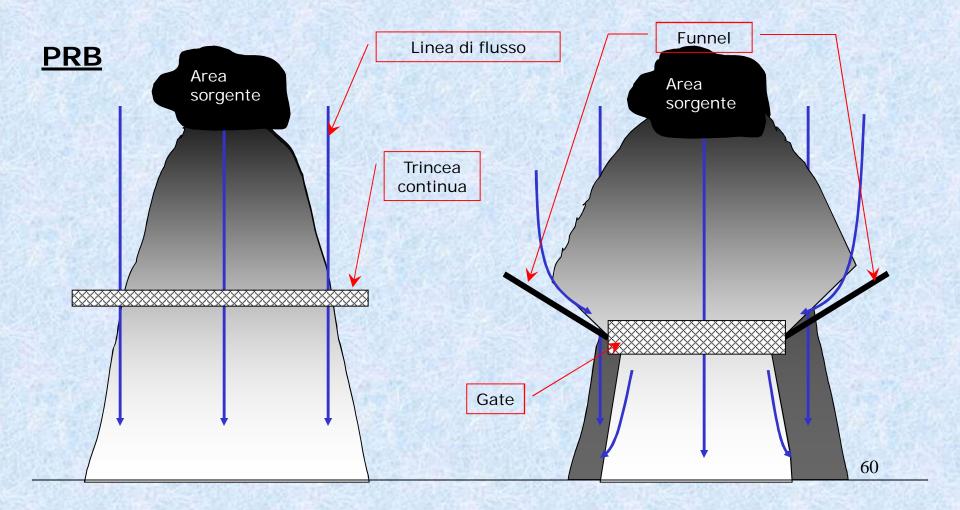
Le due configurazioni più utilizzate sono:

- a trincea continua;
- sistema Funnel & Gate™, costituito da una barriera impermeabile a forma di imbuto (Funnel) e una zona di trattamento permeabile (Gate).

Indagini ambientali e bonifiche delle aree contaminate - Elementi di base

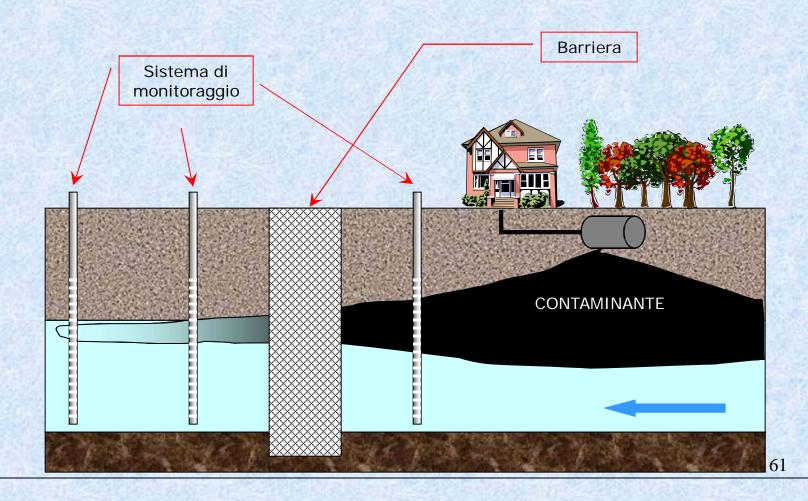
IV sezione IL PROGETTO PRELIMINARE DI BONIFICA

Metodologie e tecniche di bonifica tecniche innovative


Barriera permeabile reattiva (PRB)

I <u>reagenti</u> più spesso <u>impiegati</u> nella realizzazione delle Barriere reattive sono, in funzione del loro principio di funzionamento:

- > Adsorbimento: carboni attivi, resine e zeoliti
- Precipitazione: sali ferrosi, PO₄³⁻, limo, ceneri, BaCl₂, CaCl₂ e CaSO₄


Progetto Preliminare di Bonifica Barriere Permeabili Reattive (PRB)

Diaframma chimicamente reattivo ortogonale alla direzione di deflusso

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

Progetto Preliminare di Bonifica Barriere Permeabili Reattive (PRB)

Progetto Preliminare di Bonifica Barriere Permeabili Reattive (PRB)

FASE 1: scavo del funnel

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

Progetto Preliminare di Bonifica Barriere Permeabili Reattive (PRB)

FASE 2: costruzione del gate

Indagini ambientali e bonifiche delle aree contaminate – Elementi di base

GRAZIE PER LA CORTESE ATTENZIONE!!!