

Posa di condotte interrate mediante trivellazione orizzontale controllata - TOC

I FANGHI DI PERFORAZIONE

Filippo Desimini, HDD Specialist – Vermeer Italia S.r.l.

27 novembre 2020

Indice degli argomenti:

- Fluido di perforazione: definizione e caratteristiche
- Tipologie di terreno:
- Terreni grossolani
- Terreni fini
- Fluidi di perforazione
- Utensili di perforazione
- Volumi dei fluidi
- Pressione di foro

COS'E' UN FLUIDO DI PERFORAZIONE?

Un fluido di perforazione per almeno il 95% è composto di acqua

ma l'acqua da sola non è un buon fluido di perforazione.

SABBIA

La sabbia possiede porosità e permeabilità

ARGILLE E MARNE

Le argille e le marne possono diventare collose, rigonfiarsi o entrambe le cose quando vengono a contatto con l'acqua

ADDITIVI

Vengono aggiunti all'acqua per farla diventare più

PERFORMANTE

Funzioni del fluido di perforazione:

- Sospensione del materiale asportato
- **Trasporto del materiale** asportato
- Stabilità del foro
- Lubrificazione
- Formazione della pressione nel foro
- Raffreddamento (utensili e sonda)

Il fluido di perforazione non viene utilizzato per tirarci fuori dai guai

Il fluido di perforazione deve essere utilizzato dall'inizio della perforazione per evitare problemi

Quando si parla di risoluzione dei problemi significa che:

IL PROBLEMA E' GIA' ESISTENTE

RISOLVERLO PUO' ESSERE COSTOSO

Prevenire i problemi diventa quindi MENO COSTOSO PIU' VANTAGGIOSO

SOMMARIO

- Tipologie di terreno
- Fluidi di perforazione
- Utensili di perforazione
 - Volumi dei fluidi

Così come non esiste un unico tipo di terreno, non può esistere un unico tipo di fluido

TERRENI GROSSOLANI:

- Sabbia
- Ghiaia
- Roccia

TERRENI FINI:

- Argille
- Marne

TERRENI GROSSOLANI

TERRENI GROSSOLANI:

porosità e permeabilità

TERRENI GROSSOLANI:

inerti e non reattivi

Non diventano collosi e non si gonfiano a contatto con l'acqua

TERRENI GROSSOLANI:

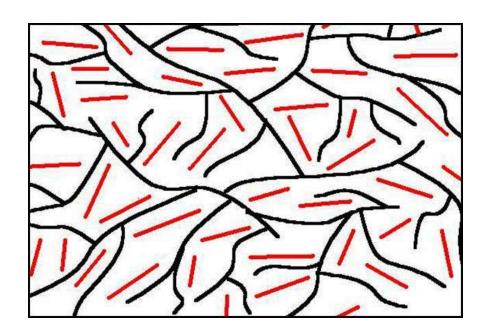
presentano problemi di tipo meccanico

TERRENI GROSSOLANI:

hanno bisogno di una soluzione di tipo meccanico

BENTONITE

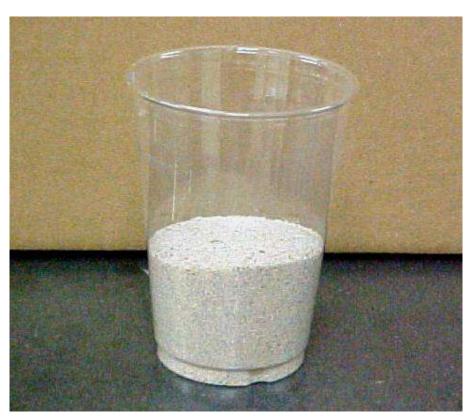
In terreni grossolani, la bentonite può essere combinata con dei polimeri per poterne aumentare le caratteristiche e le potenzialità.



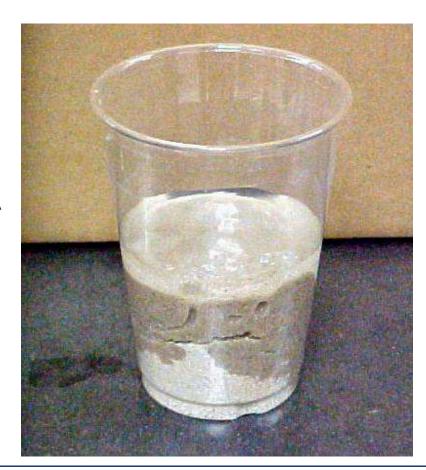
TERRENI GROSSOLANI

MOLECOLE DI BENTONITE

MOLECOLE DI POLIMERI

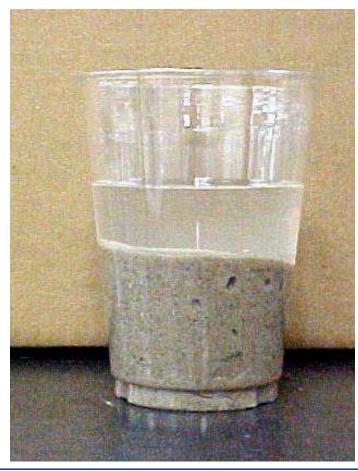


TERRENI GROSSOLANI



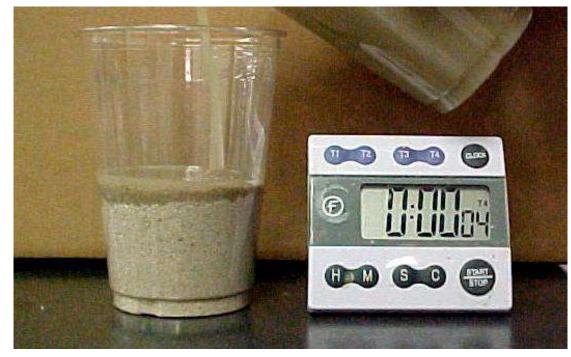
TERRENI GROSSOLANI

ACQUA CON SABBIA



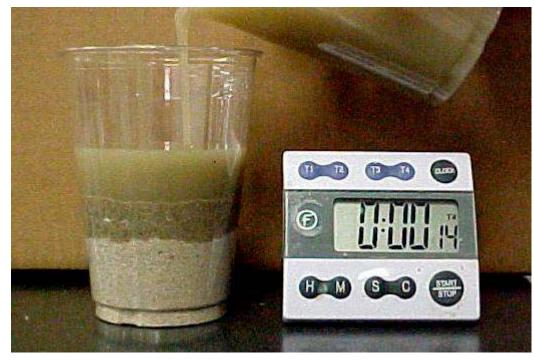
TERRENI GROSSOLANI

CINQUE SECONDI DOPO



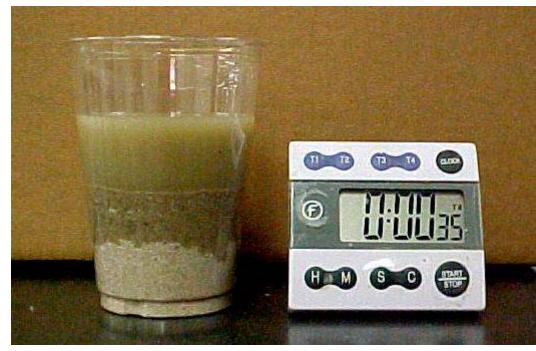
TERRENI GROSSOLANI

CON AGGIUNTA DI BENTONITE



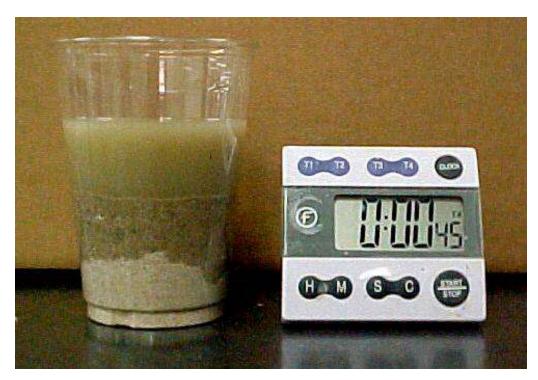
TERRENI GROSSOLANI

DOPO 14 SECONDI



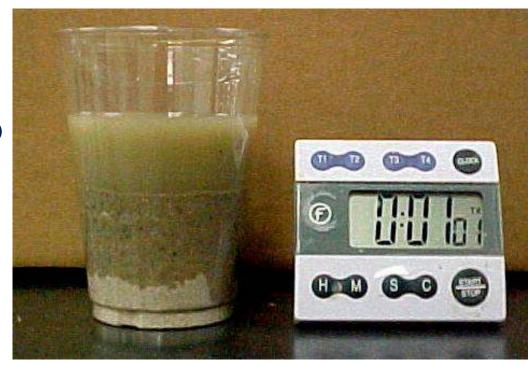
TERRENI GROSSOLANI

DOPO 35 SECONDI



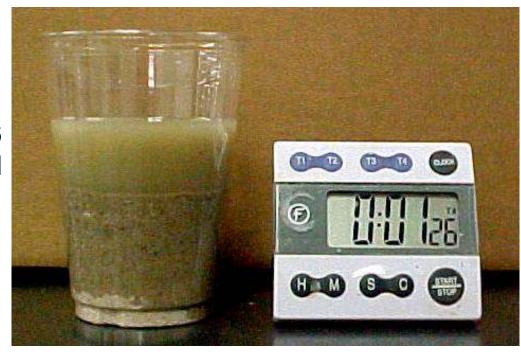
TERRENI GROSSOLANI

DOPO 45 SECONDI



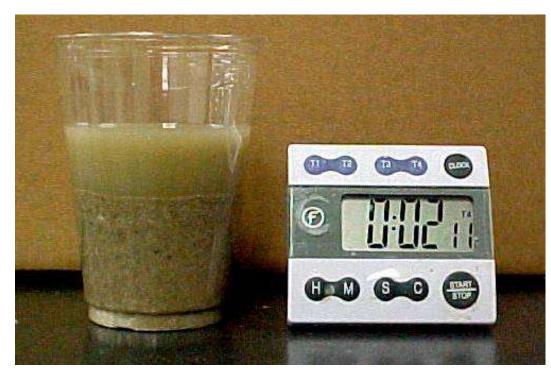
TERRENI GROSSOLANI

DOPO 1 MINUTO



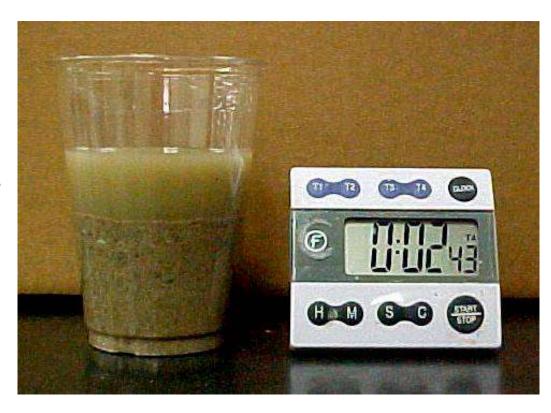
TERRENI GROSSOLANI

DOPO 1 MINUTO E 26 SECONDI



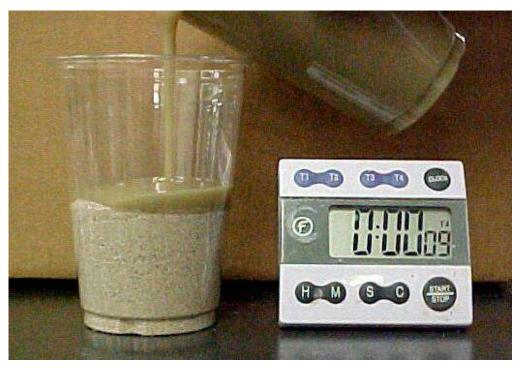
TERRENI GROSSOLANI

DOPO 2 MINUTI



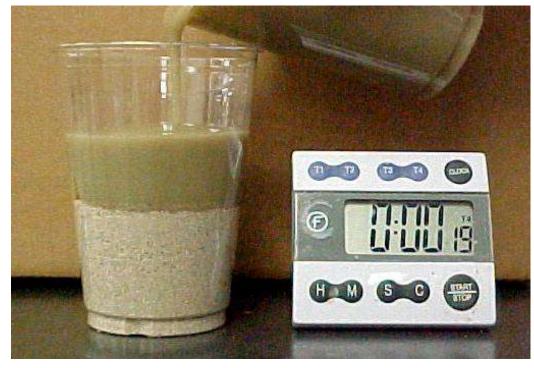
TERRENI GROSSOLANI

DOPO 2 MINUTI E 43 SECONDI



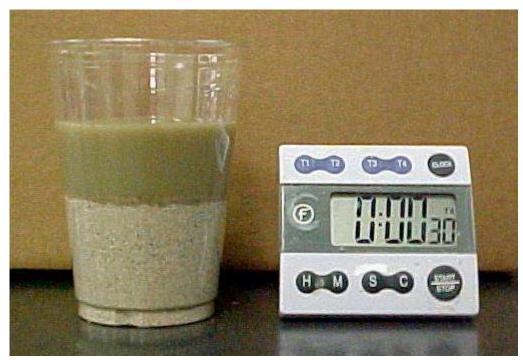
TERRENI GROSSOLANI

CON BENTONITE SODICA



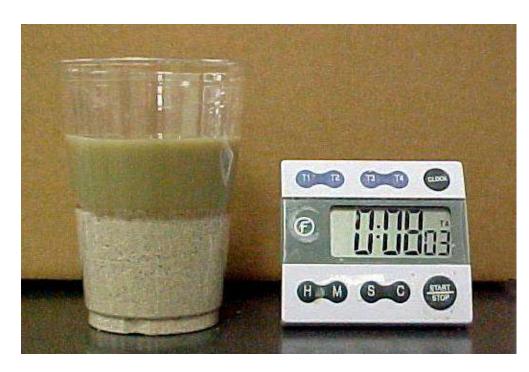
TERRENI GROSSOLANI

DOPO 19 SECONDI



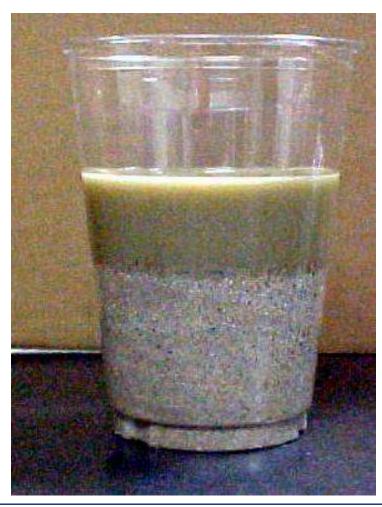
TERRENI GROSSOLANI

DOPO 30 SECONDI



TERRENI GROSSOLANI

DOPO 8 MINUTI



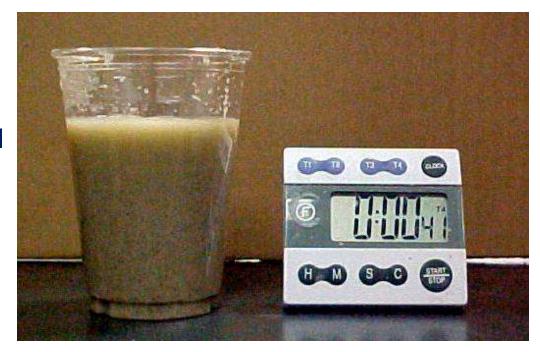
TERRENI GROSSOLANI

DOPO 24 ORE

SMARINO

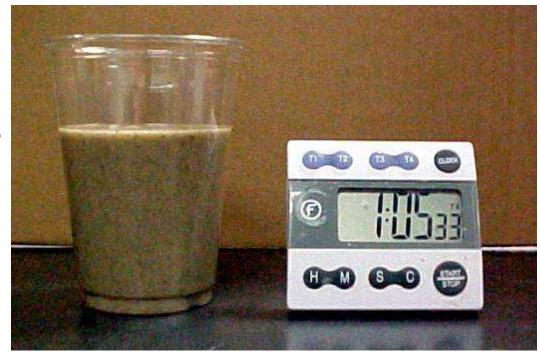
Se il fluido di perforazione ha le giuste proprietà, quando la sabbia si mescola alla bentonite, quest'ultima deve essere capace di trasportare lo smarino verso l'uscita.

(L'esempio mostra come travasando il fango da un bicchiere all'altro, lo smarino rimanga in sospensione)



SMARINO

DOPO 45 SECONDI

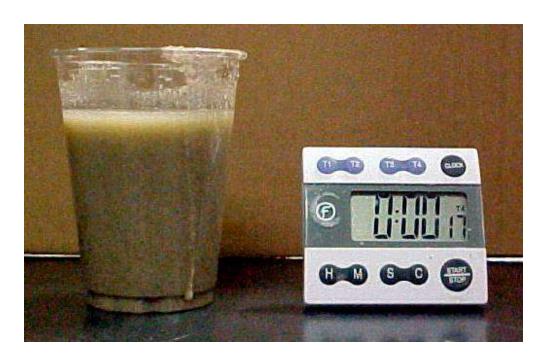


SMARINO

DOPO 1 MINUTO E 5 SECONDI

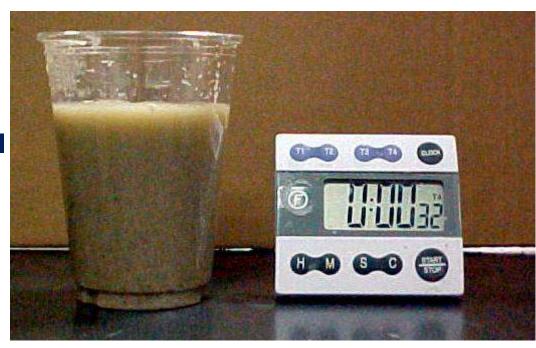
SMARINO

Quando il fango si ferma all'interno della perforazione, la bentonite deve avere la capacità di gelificare immediatamente per mantenere in sospensione lo smarino.



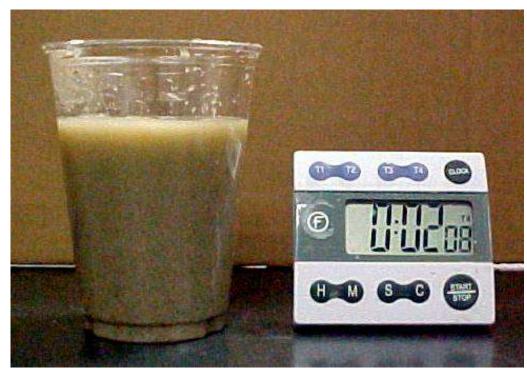
SMARINO

DOPO 17 SECONDI



SMARINO

DOPO 32 SECONDI

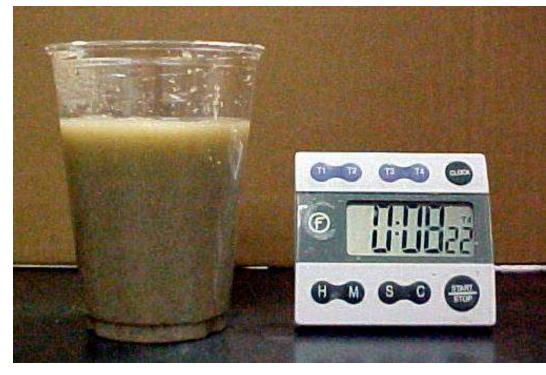


SMARINO

DOPO 2 MINUTI E 8 SECONDI

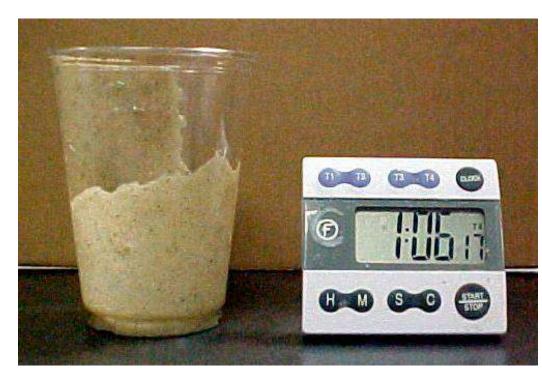
SMARINO

DOPO 3 MINUTI E 58 SECONDI



SMARINO

DOPO 8 MINUTI E 22 SECONDI



SMARINO

Sabbia rimasta, fluido rimesso in movimento: tracce

TERRENI GROSSOLANI

POLIMERI RAMIFICATI

Hanno la capacità di creare una pellicola (nota in gergo come «filter cake») sulle pareti del foro per isolarle, in modo che l'acqua del nostro fluido non idrati il terreno e non ne comprometta la formazione naturale.

TERRENI GROSSOLANI

POLIMERI RAMIFICATI

Hanno anche la capacità di aumentare la sospensione («gel strength») dello smarino quando il fango è fermo all'interno del foro, ad esempio quando si verifica un cambio asta.

Sono reattivi

TERRENI FINI

Possono diventare collosi

TERRENI FINI

Possono rigonfiarsi

Presentano problemi di tipo chimico

TERRENI FINI

HANNO BISOGNO DI UNA SOLUZIONE DI TIPO CHIMICO

TERRENI FINI

Fase di tiro con fluido bentonitico

TERRENI FINI

Reattività dell'argilla sull'utensile

TERRENI FINI

Rigonfiamento e coesione del materiale sull'utensile

TERRENI FINI

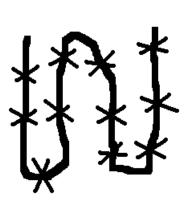
POLIMERI LINEARI

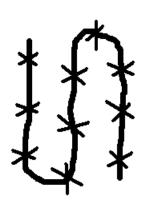
Vengono utilizzati in presenza di argille o marne

TERRENI FINI

POLIMERI LINEARI

Hanno la capacità di avvolgere l'argilla e le marne, così da non far più assorbire acqua e quindi eliminare la loro possibile collosità e capacità di rigonfiamento




TERRENI FINI

POLIMERI LINEARI

Altissima viscosità PM = 20 M PM Alta viscosità PM = 15 M PM Media viscosità PM = 5 M PM

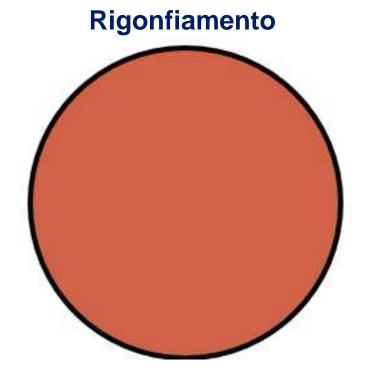
Bassa viscosità PM = 1,5 M PM

TERRENI FINI

Azione dei polimeri lineari sulle argille

TERRENI FINI

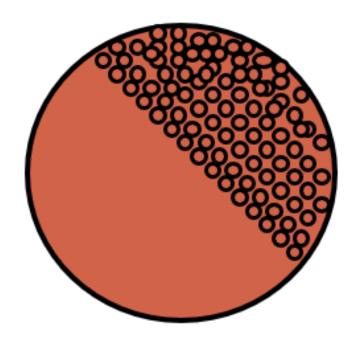
Alesatore dopo la posa della condotta



TERRENI FINI

Bentonite con aggiunta di polimeri

Superficie delle pareti del foro



TERRENI FINI

La superficie delle pareti del foro può diventare centinaia di volte quella originale

Rigonfiamento

Superficie dell'area dello smarino macinato

TERRENI FINI

CONCLUSIONE:

così come non esiste un unico tipo di terreno, non esiste nemmeno un unico tipo di fluido.

Di cosa abbiamo bisogno?

Di un fluido di perforazione?
Di un fluido di lubrificazione?
Di un fluido di stabilizzazione?
Di un fluido di cementazione?
Di tutte le caratteristiche sopra?

Fluido di perforazione

La pressione idraulica all'uscita degli ugelli dell'utensile migliora l'azione di taglio e tiene pulita la zona di contatto col terreno

Fluido di lubrificazione

Gli additivi utilizzati (bentonite, polimeri, ecc.) diminuiscono l'attrito che si genera tra il terreno e la batteria di aste, l'utensile e il prodotto da posare

Fluido di stabilizzazione

E' la capacità del fluido di creare una pellicola sulle pareti del foro (filter cake), isolandolo dal resto della formazione circostante e che non permette all'acqua nel terreno di entrare nello stesso

Fluido di cementazione

Il fango (fluido più terreno asportato) che rimane nello spazio anulare dopo la posa del prodotto, solidificandosi lo stabilizza, evitando cedimenti in superficie

Utensili di perforazione

Utensili di perforazione

Nella foto possiamo vedere alcuni dei vari tipi di utensili Di perforazione e alesatori per l'allargamento del foro

Utensili di perforazione

Così come non esiste un terreno unico, non esiste un utensile che possa lavorare al meglio in ogni condizione

Utensili di perforazione

Coltelli da taglio

Oggi esistono diverse tipologie di coltelli da taglio che posso variare per forma e dimensione, possono avere saldature antiusura, inserti in carburo di tungsteno o entrambi. Queste diversità ci permettono di affrontare al meglio le varie tipologie di terreno esistenti.

Utensili di perforazione

Teste da roccia

Esistono tre metodi per perforare la roccia, questi variano a seconda del grado di Di durezza.

- 1. Perforazione per raschiamento
- 2. Perforazione per rotazione
- 3. Perforazione per impatto

Utensili di perforazione Perforazione per raschiamento

La perforazione per raschiamento consiste nel ruotare utensili contro la superficie rocciosa. I due tipi di utensile più comuni sono i puntali rinforzati e quelli con denti con inserti in carburo di tungsteno sostituibili

Utensili di perforazione Perforazione per rotazione

La perforazione per rotazione avviene spingendo sulla superficie della roccia una serie di inserti in carburo di tungsteno o denti applicati sui dei rulli. I mud motors (motori a fanghi) e il sistema a doppia asta sono le applicazioni più comunemente usate.

Utensili di perforazione Perforazione per impatto

La perforazione per impatto (percussione) e' uno dei sistemi più recenti per perforare in roccia. Invece di raschiare la roccia, una serie ripetuta di colpi dati con una certa energia viene utilizzata per creare fratture nella roccia e rimuoverla in piccoli pezzi.

VOLUMI DI FLUIDO

Così come non esiste un unico tipo di terreno, così non esiste un'unica tipologia di volume di fluido di perforazione.

VOLUMI DI FLUIDO

Diametro dell'utensile in pollici al quadrato diviso 2

litri/metro lineare di terreno

Esempio: Alesatore da 10" (250 mm) (10x10) / 2

50 litri

VOLUMI DI FLUIDO

Il volume di smarino all'interno del fango di ritorno deve essere massimo 25%, quindi il fluido deve essere almeno 3 volte il volume di smarino da rimuovere

VOLUMI DI FLUIDO

Questo fattore varia a seconda della tipologia di terreno, della lunghezza di perforazione e del diametro finale di alesatura

VOLUMI DI FLUIDO

Esempio: in terreni grossolani, quindi inerti, se la lunghezza e il diametro della perforazione non sono elevati, un fattore di fango di 3 a 1 può andare bene.

VOLUMI DI FLUIDO

Nei terreni fini e quindi reattivi, il fattore fango può arrivare anche a 7-8 volte tanto e anche di più

VOLUMI DI FLUIDO

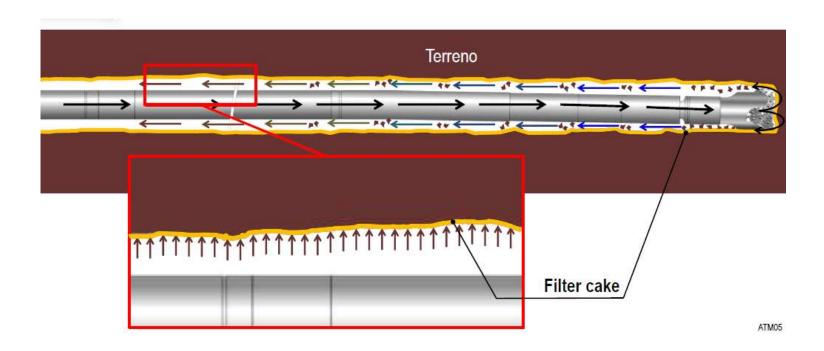
Più è lunga la perforazione, più è grande il diametro del foro, più è importante mantenere alte le proprietàdel fluido senza aumentare troppo la viscosità.

VOLUMI DI FLUIDO

A volte, per ottenere le proprietà desiderate bisogna aggiungere molta bentonite, ma così facendo si alzaanche la viscosità (aumento di pressione nel foro).

VOLUMI DI FLUIDO

In questi casi, si possono ottenere le stesse proprietà mantenendo bassa la viscosità e combinando bentonite e polimeri.



CONTROLLO DELLA PRESSIONE DI FORO

CONTROLLO DELLA PRESSIONE DI FORO

Max Allowable Pressure (MAP) (Massima pressione ammissibile):

È la massima pressione in foro alla quale il terreno può resistere senza rompersi (idrofrattura, plasticizzazione). Viene calcolata utilizzando un metodo di calcolo che prende in considerazione varie caratteristiche del terreno.

Estimated (and measured) bore pressure (EBP)

(Pressione calcolata – e misurata – in foro):

È la minima pressione necessaria a fondo foro per far circolare il fango di perforazione lungo il condotto anulare fino ai pozzetti di superficie. In fase di progetto, può essere stimata utilizzando un metodo di calcolo e successivamente misurata, mediante sensori fondo foro, durante la perforazione (pressure – while – drilling - PWD).

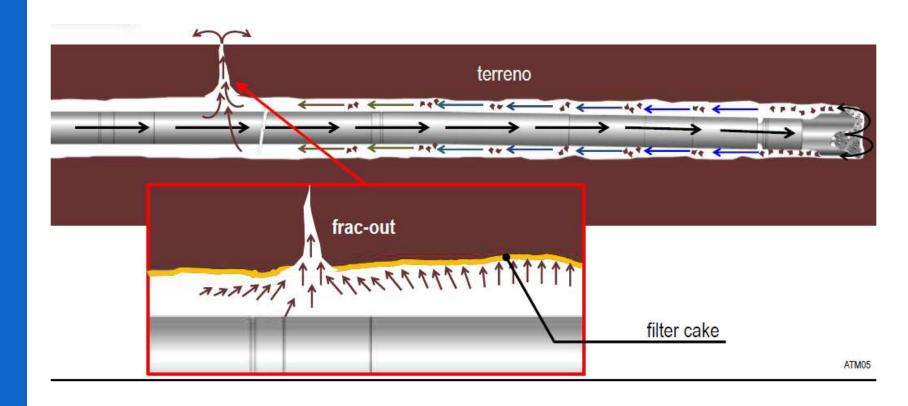
CONTROLLO DELLA PRESSIONE DI FORO

Sezione per sezione:

MAP > EBP

Quando MAP < EBP -> ritorno involontario (inadvertent return)

Un ritorno involontario (inadvertent return) è un trasferimento non intenzionale di fango di perforazione alla superficie durante le operazioni di perforazione, attraverso fratture o fessure naturali, piuttosto che come effetto di operazioni di perforazione.



CONTROLLO DELLA PRESSIONE DI FORO

Parametri che controllano la pressione in foro

I parametri sui quali è possibile intervenire al fine di controllare la pressione in foro e prevenire il verificarsi di fuoriuscite indesiderate di fango sono:

- Lunghezza del foro
- Profondità di foro
- Densità del fango
- Viscosità del fango (PV, YP)
- Sezione trasversale del condotto anulare (diametro del foro)
- Velocità anulare (portata del fango).

DOMANDE?

Grazie per l'attenzione

